Pure and Applied Geophysics

, Volume 173, Issue 6, pp 1907–1916 | Cite as

Monitoring Velocity Changes Caused By Underground Coal Mining Using Seismic Noise

  • Rafał Czarny
  • Henryk Marcak
  • Nori Nakata
  • Zenon Pilecki
  • Zbigniew Isakow
Article

Abstract

We use passive seismic interferometry to monitor temporal variations of seismic wave velocities at the area of underground coal mining named Jas-Mos in Poland. Ambient noise data were recorded continuously for 42 days by two three-component broadband seismometers deployed at the ground surface. The sensors are about 2.8 km apart, and we measure the temporal velocity changes between them using cross-correlation techniques. Using causal and acausal parts of nine-component cross-correlation functions (CCFs) with a stretching technique, we obtain seismic velocity changes in the frequency band between 0.6 and 1.2 Hz. The nine-component CCFs are useful to stabilize estimation of velocity changes. We discover correlation between average velocity changes and seismic events induced by mining. Especially after an event occurred between the stations, the velocity decreased about 0.4 %. Based on this study, we conclude that we can monitor the changes of seismic velocities, which are related to stiffness, effective stress, and other mechanical properties at subsurface, caused by mining activities even with a few stations.

Keywords

Monitoring scattering coda waves coal mine induced seismicity 

Notes

Acknowledgments

This article was prepared as a result of the LOFRES Project No PBS1/A2/13/2013 performed within the 1st call of the Applied Research Programme co-financed by the National Centre for Research and Development in Poland. We thank the editor and two anonymous reviewers for valuable comments and discussions.

References

  1. Bała, M., and K. Witek (2007), Model prędkościowy fal P i S oraz gęstości objętościowych dla wybranych otworów w rejonie Karpat Zachodnich, Geol. / Akad. Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, 33(4/1), 59–80 (In Polish).Google Scholar
  2. Bensen, G. D., M. H. Ritzwoller, M. P. Barmin, A. L. Levshin, F. Lin, M. P. Moschetti, N. M. Shapiro, and Y. Yang (2007), Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, Geophys. J. Int., 169, 1239–1260, doi:10.1111/j.1365-246X.2007.03374.x.
  3. Brady, B. H. G., and E. T. Brown (1993), Rock mechanics: for underground mining, Chapman & Hall.Google Scholar
  4. Brenguier, F., M. Campillo, C. Hadziioannou, N. M. Shapiro, R. M. Nadeau, and E. Larose (2008a), Postseismic relaxation along the San Andreas fault at Parkfield from continuous seismological observation., Science, 321(5895), 1478–81, doi:10.1126/science.1160943.
  5. Brenguier, F., N. M. Shapiro, M. Campillo, V. Ferrazzini, Z. Duputel, O. Coutant, and A. Nercessian (2008b), Towards forecasting volcanic eruptions using seismic noise, Nat. Geosci., 1(2), 126–130, doi:10.1038/ngeo104.
  6. Dubiński, J., and Z. Wierzchowska (1973), Methods of calculation of seismic energy for mining tremors (in Polish), Pr. GIG, Komun. GIG, 591.(In Polish).Google Scholar
  7. Dubiński, J., and J. Dworak (1989), Recognition of the zones of seismic hazard in Polish Coal mines by using a seismic method, Pure Appl. Geophys, 129(3–4), 609–617, doi:10.1007/BF00874528.
  8. Dubiński, J., and G. Mutke (1996), Characteristics of mining tremors within the near-wave field zone, Pure Appl. Geophys. , 147(2), 249–261, doi:10.1007/BF00877481.
  9. Froment, B., M. Campillo, J. H. Chen, and Q. Y. Liu (2013), Deformation at depth associated with the 12 May 2008 MW 7.9 Wenchuan earthquake from seismic ambient noise monitoring, Geophys. Res. Lett., 40(11–2012), 78–82, doi:10.1029/2012GL053995.
  10. Gibowicz, S., and A. Kijko (1994), An introduction to mining seismology, Academic Press, New York.Google Scholar
  11. Hadziioannou, C., E. Larose, O. Coutant, P. Roux, and M. Campillo (2009), Stability of monitoring weak changes in multiply scattering media with ambient noise correlation: laboratory experiments., J. Acoust. Soc. Am., 125, 3688–3695, doi:10.1121/1.3125345.
  12. He, H., L. Dou, X. Li, Q. Qiao, T. Chen, and S. Gong (2011), Active velocity tomography for assessing rock burst hazards in a kilometer deep mine, Min. Sci. Technol., 21(5), 673–676, doi:10.1016/j.mstc.2011.10.003.
  13. Hobiger, M., U. Wegler, K. Shiomi, and H. Nakahara (2012), Coseismic and postseismic elastic wave velocity variations caused by the 2008 Iwate-Miyagi Nairiku earthquake, Japan, J. Geophys. Res., 117(B9), B09313, doi:10.1029/2012JB009402.
  14. Hobiger, M., U. Wegler, K. Shiomi, and H. Nakahara (2014), Single-station cross-correlation analysis of ambient seismic noise: application to stations in the surroundings of the 2008 Iwate-Miyagi Nairiku earthquake, Geophys. J. Int., 198(1), 90–109, doi:10.1093/gji/ggu115.
  15. Hoek, E., and E. T. Brown (1980), Underground excavations in rock, Institution of Mining and Metallurgy, London.Google Scholar
  16. Hosseini, N., K. Oraee, K. Shahriar, and K. Goshtasbi (2012), Passive seismic velocity tomography on longwall mining panel based on simultaneous iterative reconstructive technique (SIRT), J. Cent. South Univ., 19(8), 2297–2306, doi:10.1007/s11771-012-1275-z.
  17. Lasocki, S., and B. Orlecka-Sikora (2008), Seismic hazard assessment under complex source size distribution of mining-induced seismicity, Tectonophysics, 456(1–2), 28–37, doi:10.1016/j.tecto.2006.08.013.
  18. Leśniak, A., and Z. Isakow (2009), Space–time clustering of seismic events and hazard assessment in the Zabrze-Bielszowice coal mine, Poland, Int. J. Rock Mech. Min. Sci., 46(5), 918–928, doi:10.1016/j.ijrmms.2008.12.003.
  19. Lurka, A. (2008), Location of high seismic activity zones and seismic hazard assessment in Zabrze Bielszowice coal mine using passive tomography, J. China Univ. Min. Technol., 18(2), 177–181, doi:10.1016/S1006-1266(08)60038-3.
  20. Mainsant, G., E. Larose, C. Brönnimann, D. Jongmans, C. Michoud, and M. Jaboyedoff (2012), Ambient seismic noise monitoring of a clay landslide: Toward failure prediction, J. Geophys. Res., 117(F1), F01030, doi:10.1029/2011JF002159.
  21. Nakata, N., and R. Snieder (2012), Time-lapse change in anisotropy in Japan’s near surface after the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 39(11), doi:10.1029/2012GL051979.
  22. Nakata, N., and R. Snieder (2014), Monitoring a building using deconvolution interferometry. II: ambient‐vibration analysis, Bull. Seismol. Soc. Am., 104, 204–213, doi:10.1785/0120130050.
  23. Ohmi, S., K. Hirahara, H. Wada, and K. Ito (2008), Temporal variations of crustal structure in the source region of the 2007 Noto Hanto Earthquake, central Japan, with passive image interferometry, Earth, Planets Sp., 60(10), 1069–1074, doi:10.1186/BF03352871.
  24. Rivet, D., M. Campillo, N. M. Shapiro, V. Cruz-Atienza, M. Radiguet, N. Cotte, and V. Kostoglodov (2011), Seismic evidence of nonlinear crustal deformation during a large slow slip event in Mexico, Geophys. Res. Lett., 38(8), doi:10.1029/2011GL047151.
  25. Sens-Schönfelder, C., and U. Wegler (2006), Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia, Geophys. Res. Lett., 33(21), L21302, doi:10.1029/2006GL027797.
  26. Szreder, Z., Z. Pilecki, and J. Klosinski (2008), Effectiveness of recognition of exploitation edge influence with the help of profiling of attenuation and velocity of seismic wave, Gospod. SUROWCAMI Miner., 24, 215–226.Google Scholar
  27. Wapenaar, K., D. Draganov, and R. Snieder (2010a), Tutorial on seismic interferometry: Part 1—Basic principles and applications, Geophysics, 75, 75A195–75A209, doi:10.1190/1.3457445.
  28. Wapenaar, K., E. Slob, R. Snieder, and A. Curtis (2010b), Tutorial on seismic interferometry: Part 2–Underlying theory and new advances, Geophysics, 75, 75A211, doi:10.1190/1.3463440.
  29. Weaver, R. L., C. Hadziioannou, E. Larose, and M. Campillo (2011), On the precision of noise correlation interferometry, Geophys. J. Int., 185, 1384–1392, doi:10.1111/j.1365-246X.2011.05015.x.
  30. Wegler, U., and C. Sens-Schönfelder (2007), Fault zone monitoring with passive image interferometry, Geophys. J. Int., 168, 1029–1033, doi:10.1111/j.1365-246X.2006.03284.x.
  31. Zhan, Z., V. C. Tsai, and R. W. Clayton (2013), Spurious velocity changes caused by temporal variations in ambient noise frequency content, Geophys. J. Int., 194(3), 1574–1581, doi:10.1093/gji/ggt170.
  32. Zuberek, W., and L. Chodyn (1989), Practical application of the phenomenon of acoustic emission in rock, Arch. Acoust., 14, 123–142.Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Rafał Czarny
    • 1
  • Henryk Marcak
    • 1
  • Nori Nakata
    • 2
  • Zenon Pilecki
    • 1
  • Zbigniew Isakow
    • 3
  1. 1.The Mineral and Energy Economy Research Institute of the Polish Academy of SciencesKrakowPoland
  2. 2.Department of GeophysicsStanford UniversityStanfordUSA
  3. 3.Institute of Innovative Technologies EMAGKatowicePoland

Personalised recommendations