Abstract
On September 16, 2015 a magnitude Mw 8.3 earthquake took place off the coast of the Coquimbo Region, Chile. Three tsunami survey teams covered approximately 700 km of the Pacific coast. The teams surveyed the area, recording 83 tsunami flow depth and runup measurements. The maximum runup was found to be 10.8 m at only one small bay, in front of the inferred tsunami source area. However, it was observed that runup in other locations rarely exceed 6 m. Tsunami runup was larger than those of the 2014 Pisagua event, despite the similar earthquake magnitude. Moreover, tsunami arrival times were found to be shorter than those of previous tsunamis along the Chilean subduction zone. Numerical simulations of the tsunami event showed a good agreement with field data, highlighting that tsunami arrival time and the spatial variation of the tsunami amplitudes were strongly influenced by the bathymetry, coastal morphology and the slip distribution of the causative earthquake.
This is a preview of subscription content, access via your institution.








References
An, C.; Sepúlveda, I. & Liu, P. L.-F. (2014), ‘Tsunami Source and Its Validation of the 2014 Iquique, Chile Earthquake’, Geophysical Research Letters 41(11), 3988–3994, doi: 10.1002/2014GL060567
Aránguiz, R., (2015). Tsunami Resonance in the Bay of Concepción (Chile) and the effect of Future Event. Handbook of Coastal Disaster Mitigation for Engineers and Planners. http://dx.doi.org/10.1016/B978-0-12-801060-0.00006-X
Beck, S., Barrientos, S., Kausel, E., Reyes M., (1998). Source characteristics of the historic earthquake along the central Chile subduction zone. Journal of South American Earth Science, Vol 11 No 2 pp 115–129.
Borrero, J.C. (2005). Field Data and Satellite Imagery of Tsunami Effects in Banda Aceh, Science, V. 308, p. 1596 June 10, 2005.
Catalán, P., Aránguiz, R., González, G., Tomita, T., Cienfuegos, R., González, J., Shrivastava, M., Kumagai, K., Mokrani, C., Cortés, P., Gubler, A., (2015), The 1 April 2014 Pisagua tsunami: Observations and modeling, Geophys. Res. Lett., 42, doi:10.1002/2015GL063333
Dengler, L.; Borrero, J.; Gelfenbaum, G.; Jaffe, B.; Okal, E.; Ortiz, M.; Titov, V.; Anima, R.; Anticona, L. B.; Araya, S.; Gomer, B.; Gómez, J.; Koshimura, S.-i.; Laos, G. & Ocala, L. (2003), ‘Tsunami’, Earthquake Spectra 19(S1), 115—144, doi: 10.1193/1.1737247
Dominey-Howes, D.; Dengler, L.; Dunbar, P.; Kong, L.; Fritz, H.; Imamura, F.; McAdoo, B.; Satake, K.; Yalciner, A.; Yamamoto, M.; Yulianto, E.; Koshimura, S. & Borrero, J. (2012), ‘Post-Tsunami Survey Field Guide, 2nd Edition.’(IOC Manuals and Guides No. 37), Technical report, UNESCO, Paris.
Fritz, H. M., Petroff, C. M., Catalán, P. A., Cienfuegos, R., Winckler, P., Kalligeris, N., Weiss, R., Barientos, S., Meneses, G., Valderas, C., Ebeling, C., Papadopoulus, A., Contreras, M., Almar, R., Dominguez, J. C., & Synolakis, C. E., (2011) “Field Survey of the 27 February 2010 Chile Tsunami”, Pure and Applied. Geophysics. Springer Basel AG.
Geist, E. (2002), ‘Complex earthquake rupture and local tsunamis’, Journal of Geophysical Research 107(B5), 2086, doi: 10.1029/2000JB000139.
Hayes, (2014). Preliminary Finite Fault Results for the Apr 01, 2014 Mw 8.2 99 km NW of Iquique, Chile Earthquake (Version 1). [Available at: http://earthquake.usgs.gov/earthquakes/eventpage/usc000nzvd#scientific_finitefault].
La Tercera (2015). [http://www.latercera.com/noticia/nacional/2015/09/680-648455-9-terremoto-encuentran-cuerpo-de-mujer-en-coquimbo.shtml].
Larrañaga Martin, E. (2010), Analisis del Proceso de Toma de Decisiones, Fiscal de la Investigación Técnica, Armada de Chile, Valparaiso, Chile.
Lomnitz, C., (1970). Major Earthquakes and Tsunami in Chile during the period 1535 to 1955. Geol. Rundschau 59 (3), 938–960.
Nishenko, S.P., (1985). Seismic potential for large and great interplate earthquakes along the Chilean and southern Peruvian margins of South America: a quantitative reappraisal. J. Geophys. Res. 90. http://dx.doi.org/10.1029/JB090iB05p03589. issn:0148-0227.
Okada, Y., (1985) “Surface Deformation of Shear and Tensile Faults in a Half-Space”, Bulletin of the Seismological Society of America, 75, [4], 1135–1154.
Okuwaki, R., Yagi, Y., Aránguiz, R., González, J., González, G., (2015). Rupture process during the 2015 Illapel, Chile earthquake: Zigzag-along-dip rupture episodes, submitted to Pure Appl. Geophys., on 30 November 2015, for the special issue “2015 Chile”.
ONEMI, (2015). Monitoreo por sismo de mayor intensidad. (In Spanish) [Available at: http://www.onemi.cl/alerta/se-declara-alerta-roja-por-sismo-de-mayor-intensidad-y-alarma-de-tsunami/].
SHOA, 2015a, Informe Preliminar Evento de Illapel, Servicio Hidrográfico y Oceanográfico de la Armada de Chile, 2015 (in Spanish)
SHOA, 2015b, Tablas de Marea de las Costas de Chile, Servicio Hidrográfico y Oceanográfico de la Armada de Chile, 2015 (in Spanish)
Soloviev, S.L., & Go, Ch., N., (1975) “A catalogue of tsunamis on the Eastern shore of the Pacific Ocean”, Nauka Publishing House, Moscow, 202p
Synolakis, C. & Okal, E. (2005), 1992–2002: Perspective on a Decade of Post-Tsunami Surveys, in K. Satake, ed., ‘Tsunamis: Case Studies and Recent Developments’, Springer, pp. 1–29.
Yagi, Y., and Fukahata, Y. (2011), Introduction of uncertainty of Green’s function into waveform inversion for seismic source processes. Geophysical Journal International, 186 (2): 711-720.
Yamazaki, Y., and Cheung, K. F. (2011) “Shelf Resonance and Impact of Near-field Tsunami generated by the 2010 Chile Earthquake”, Geophyical Research Letters, 38(12), L12605, doi: 10.1029/2011GL047508
Yamazaki, Y., Kowalik, Z., and Cheung, K. F. (2009) “Depth-integrated, non-hydrostatic model for wave breaking and runup”, Int. J. Numer. Methods Fluids, 61(5), 473–497.
Yamazaki, Y., Cheung, K.F., and Kowalik, Z. (2011) “Depth-integrated, non-hydrostatic model with grid nesting for tsunami generation, propagation, and runup”. International Journal for Numerical Methods in Fluids, 67(12), 2081–2107.
Ye, L., Lay, T., Kanamori, H., Koper, K., (2015). Rapidly Estimated Seismic Source Parameters for the 16 September 2015 Illapel, Chile Mw 8.3 Earthquake. Pure Appl. Geophys. doi: 10.1007/s00024-015-1202-y
Acknowledgments
The authors would like to thank CONICYT (Chile) for its FONDAP 15110017, and FONDECYT 11140424 grants as well as FB0821 grant. Thanks to the Faculty of Engineering at UCSC for the partial funding of the post tsunami survey. The authors also thank The Japan International Cooperation Agency (JICA) and the Japan Science and Technology Agency (JST) through their SATREPS Program “Enhancement of Technology to Develop Tsunami-resilient Community”. Special thanks to people who contributed to the collection of field data: Stephane Abadie, Patricio Winckler, Jose Baquedano, Matias Carvajal, Pablo Cortes, Alejandra Gubler, Raimundo Ibaceta, Cyril Mokrani, Alejandro Urrutia, Georgette Mell, Carlos Inostroza, Bob Keulers and Kimberley Koudstaal. Thanks to the Chilean Navy and the Municipality of Coquimbo for their important help during the field survey. We thank the editor and the two reviewers for their comments which help us to improve the manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
This paper is part of the article collection on “Illapel, Chile, Earthquake on September 16th, 2015”.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Appendix
Appendix
See Table 1.
Rights and permissions
About this article
Cite this article
Aránguiz, R., González, G., González, J. et al. The 16 September 2015 Chile Tsunami from the Post-Tsunami Survey and Numerical Modeling Perspectives. Pure Appl. Geophys. 173, 333–348 (2016). https://doi.org/10.1007/s00024-015-1225-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00024-015-1225-4
Keywords
- Tsunami
- chile
- runup
- continental shelf
- south pacific ocean