Skip to main content
Log in

A Lagrange-Galerkin hp-Finite Element Method for a 3D Nonhydrostatic Ocean Model

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We introduce in this paper a Lagrange-Galerkin hp-finite element method to calculate the numerical solution of a nonhydrostatic ocean model. The Lagrange-Galerkin method yields a Stokes-like problem the solution of which is computed by a second-order rotational splitting scheme that separates the calculation of the velocity and pressure, the latter is decomposed into hydrostatic and nonhydrostatic components. We have tested the method in flows where the nonhydrostatic effects are important. The results are very encouraging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • V. Casulli. A semi-implicit finite difference method for non-hydrostatic, free-surface flows. Int. J. Numer. Meth. Fluids, 30(4):425–440, 1999.

  • V. Casulli and P. Zanolli. Semi-implicit numerical modeling of nonhydrostatic free-surface flows for environmental problems. Math. Comput. Modelling, 36(9-10):1131–1149, 2002.

  • A.J. Chorin. Numerical solution of the Navier-Stokes equations. Math. Comp., 22:745–762, 1968.

  • J.H. Ferziger and M. Peric Computational method for fluid dynamics. 2nd Edition, Springer, 1999.

  • P. Galán del Sastre and R. Bermejo. A comparison of semi-Lagrangian and Lagrange-Galerkin hp-FEM methods in convection-diffusion problems. Commun. Comput. Phys., 9(4):1020–1039, 2011.

  • J. L. Guermond, P. Minev, and J. Shen. An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Engrg., 195(44-47):6011–6045, 2006.

  • J.-L. Guermond and L. Quartapelle. A projection FEM for variable density incompressible flows. J. Comput. Phys., 165(1):167–188, 2000.

  • J. L. Guermond and J. Shen. A new class of truly consistent splitting schemes for incompressible flows. J. Comput. Phys., 192(1):262–276, 2003.

  • J. L. Guermond and J. Shen. Velocity-correction projection methods for incompressible flows. SIAM J. Numer. Anal., 41(1):112–134 (electronic), 2003.

  • D.B. Haidvogel and A. Beckmann. Numerical ocean circulation modeling. Imperial College Press, 1999.

  • Y. Heggelund, F. Vikebo, J. Berntsen, and G. Furnes. Hydrostatic and non-hydrostatic studies of gravitational adjustment over a slope. Cont. Shelf Res., 24(18):2133–2148, DEC 2004.

  • D.A. Horn, J. Imberger, and G.N. Ivey. The degeneration of large-scale interfacial gravity waves in lakes. J. Fluid Mech., 434:181–207, MAY 10 2001.

  • M. Iskandarani, D. B. Haidvogel, and J. C. Levin. A three-dimensional spectral element model for the solution of the hydrostatic primitive equations. J. Comput. Phys., 186(2):397–425, 2003.

  • M. Iskandarani, J.C. Levin, B.J. Choi, and D.B. Haidvogel. Comparison of advection schemes for high-order h-p finite element and finite volume methods. Ocean Model., 10(1-2):233–252, 2005.

  • Y. Kanarska, A. Shchepetkin, and J. C. McWilliams. Algorithm for non-hydrostatic dynamics in the regional oceanic modeling system. Ocean Model., 18(3-4):143–174, 2007.

  • G. Karniadakis, M. Israeli, and S.A. Orszag. High-order splitting methods for the incompressible Navier-Stokes equations. J. Comput. Phys., 97(2):414–443, 1991.

  • G. Karniadakis and S.J. Sherwin. Spectral/hp element methods for CFD. Numerical Mathematics and Scientific Computation. Oxford University Press, New York, 1999.

  • R.J. Labeur and J.D. Pietrzak. A fully three dimensional unstructured grid non-hydrostatic finite element coastal model. Ocean Model., 10:51–67, 2005.

  • J. Marshall, A. Adcroft, C. Hill, L. Perelman, and C. Heisey. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102(C3):5753–5766, MAR 15 1997.

  • J. Marshall, C. Hill, L. Perelman, and A. Adcroft. Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102(C3):5733–5752, MAR 15 1997.

  • K.W. Morton, A. Priestley, and E. Süli. Stability of the Lagrange-Galerkin method with nonexact integration. RAIRO Modél. Math. Anal. Numér., 22(4):625–653, 1988.

  • G. Sannino, A. Bargagli, and V. Artale. Numerical modeling of the mean exchange through the Strait of Gibraltar. J. Geophys. Res., 107(C8):9–1–9–24, 2002.

  • R. Temam. Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. II. Arch. Rational Mech. Anal., 33:377–385, 1969.

  • R. Temam. Navier-Stokes equations. Theory and numerical analysis. North-Holland Publishing Co., Amsterdam, 1977. Studies in Mathematics and its Applications, Vol. 2.

  • UNESCO. Tenth report of the joint panel on oceanographic tables and standards. UNESCO Technical Papers in Marine Sci., 36, 1981.

  • P. Šolín, K. Segeth, and I. Doležel. Higher-order finite element methods. Studies in Advanced Mathematics. Chapman & Hall/CRC, Boca Raton, FL, 2004. With 1 CD-ROM (Windows, Macintosh, UNIX and LINUX).

Download references

Acknowledgments

The first author research has been partially funded by the Spanish Economy and Competitivity Ministry and the European Regional Development Fund, through grant CGL2013-47261-R. Both authors would like to acknowledge the comments of one of the referees, who has helped in improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Galán del Sastre.

Appendices

Appendix 1: Existence and Uniqueness of the Density Problem

This appendix is related to the existence and uniqueness of the variational problem (13) that is used in the numerical scheme to compute the function \(\bar{\rho }\) defined in (11). In a general framework, this can be written as follows. Given \(f\in L^{2}\left( D\right)\), find \(u\in H_{0}( D,\frac{\partial }{\partial z})\) such that

$$\begin{aligned} \int _{D}\frac{\partial u}{\partial z}\frac{\partial v}{\partial z}=\int _{D}f\frac{\partial v}{\partial z}\qquad \text{ for } \text{ all } v\in H_{0}\left( D,\frac{\partial }{\partial z}\right) . \end{aligned}$$
(14)

The space \(H\left( D,\frac{\partial }{\partial z}\right)\) defined in (5) is a Hilbert space with norm

$$\begin{aligned} \left\| v\right\| _{H\left( D,\frac{\partial }{\partial z}\right) }=\sqrt{\left\| v\right\| ^{2}+\left\| \frac{\partial v}{\partial z}\right\| ^{2}}. \end{aligned}$$

The subspace \(H_{0}( D,\frac{\partial }{\partial z})\) is well defined because following Temam (1977), we can define a trace operator \(\gamma :H(D,\frac{\partial }{\partial z}) \rightarrow H^{-\frac{1}{2}}\left( \Gamma _{s}\right)\) the kernel of which is the space \(H_{0}( D,\frac{\partial }{\partial z})\). It is easy to see that \(\left\| \frac{\partial u}{\partial z}\right\|\) is a norm in \(H_{0}( D,\frac{\partial }{\partial z})\). Now applying the Lax-Milgram Lemma, it follows that problem (14) has a unique solution.

Appendix 2: Impact of Extrapolated Coriolis Term on the Overall Stability

Roughly speaking, Eq. (8) is the semi-discrete version of

$$\begin{aligned} \frac{{\rm{D}}\mathbf {u}}{{\rm{D}}t}-\text{ div }\left( A\nabla \mathbf {u}\right) +\mathbf {f}\times \mathbf {u}=\mathbf {r}, \end{aligned}$$

and the finite element formulation of this equation yields

$$\begin{aligned} M\frac{{\rm{D}}\mathbf {u}_h}{{\rm{D}}t}+S\mathbf {u}_h+M\left( \mathbf {f}\times \mathbf {u}_h\right) =M\mathbf {r}_h, \end{aligned}$$
(15)

where M and S are the mass and stiffness matrices, respectively, the coefficients of which are given by

$$\begin{aligned} m_{ij}= & {} \int _{D}\phi _{i}\phi _{j},\\ s_{ij}= & {} \int _{D}A\nabla \phi _{i}\nabla \phi _{j}, \end{aligned}$$

and where \(\mathbf {u}_h\) and \(\mathbf {r}_h\) are the finite element approximation of \(\mathbf {u}\) and \(\mathbf {r}\), respectively. Since M is a non-singular matrix, we can write (15) as

$$\begin{aligned} \frac{{\rm{D}}\mathbf {u}_h}{{\rm{D}}t}+M^{-1}S\mathbf {u}_h+\mathbf {f}\times \mathbf {u}_h=\mathbf {r}_h \end{aligned}$$

The stability of the latter equation can be studied as the stability of the simplified ODE

$$\begin{aligned} y'=\lambda y \end{aligned}$$

where \(y=u+iv\) and \(\lambda =a+bi\) are complex function and number, respectively (note that, for this specific case, a corresponds to the eigenvalues of the matrix \(M^{-1}S\) and b to the Coriolis parameter f). This ODE can be discretized using the second-order BDF formula, as in (8):

$$\begin{aligned} \frac{\frac{3}{2}y^{n+1}-2y^{n}+\frac{1}{2}y^{n-1}}{\Delta t}=\lambda \left( 2y^{n}-y^{n-1}\right) . \end{aligned}$$

The stability diagram is shown in Fig. 15a. Since the smallest eigenvalue of \(M^{-1}S\) is much smaller than f, \(\lambda\) is very close to the imaginary axis, so the extrapolation formula could be unstable.

Fig. 15
figure 15

Stability region of a explicit second-order BDF method, b predictor–corrector second-order BDF method and c predictor–corrector second-order BDF method with implicit treatment of viscous term (see “Appendix 2”)

To extend the stability region, one can use a prediction-correction treatment of this term, i.e.,

$$\begin{aligned} \frac{\frac{3}{2}\hat{y}^{n+1}-2y^{n}+\frac{1}{2}y^{n-1}}{\Delta t}&= {} \lambda \left( 2y^{n}-y^{n-1}\right) ,\\ \frac{\frac{3}{2}y^{n+1}-2y^{n}+\frac{1}{2}y^{n-1}}{\Delta t}&= {} \lambda \hat{y}^{n+1}. \end{aligned}$$

The stability diagram for the predictor–corrector scheme is shown in Fig. 15b.

A more stable scheme corresponding to the implicit treatment of the viscous term is the following:

$$\begin{aligned} \frac{\frac{3}{2}\hat{y}^{n+1}-2y^{n}+\frac{1}{2}y^{n-1}}{\Delta t}&= {} a\hat{y}^{n+1} + bi\left( 2y^{n}-y^{n-1}\right) ,\\ \frac{\frac{3}{2}y^{n+1}-2y^{n}+\frac{1}{2}y^{n-1}}{\Delta t}&= {} ay^{n+1} + bi\hat{y}^{n+1}. \end{aligned}$$

The stability diagram of which is represented in Fig. 15c.

This predictor–corrector applied to the proposed splitting becomes: for \(j=1,2\),

  1. 1.

    Set \(\mathbf {u}_{e,j}^{n+1}=2\mathbf {u}^{n}-\mathbf {u}^{n-1}\) for \(j=1\) or \(\mathbf {u}_{e,j}^{n+1}=\mathbf {u}_{e,j-1}^{n+1}\) for \(j=2\), and compute \(q_{j}^{n+1}\in H^{1}\left( D\right)\) that satisfies:

    $$\begin{aligned} \Delta t\left( \nabla q_{j}^{n+1},\nabla v\right)= & {} \rho _{0}\left( 2\mathbf {u}^{n*}-\frac{1}{2}\mathbf {u}^{\left( n-1\right) **},\nabla v\right) \\&+\rho _{0}\left( -\Delta t\nabla \times \left( A\nabla \right) \times \mathbf {u}_{e,j}^{n+1}-\Delta t\mathbf {f}\times \mathbf {u}_{e,j}^{n+1},\nabla v\right) \\&-\Delta t\left( \nabla r^{n+1},\nabla v\right) +\Delta t\mathbf {g}\left( \rho ^{n+1},\nabla v\right) \end{aligned}$$

    for all \(v\in H^{1}\left( D\right)\).

  2. 2.

    Compute \(\mathbf {u}_{j}^{n+1}\in V\) such that

    $$\begin{aligned} \frac{3}{2}\left( \mathbf {u}_{j}^{n+1},\mathbf {v}\right) +\Delta t\left( A\nabla \mathbf {u}_{j}^{n+1},\nabla \mathbf {v}\right)= & {} \left( 2\mathbf {u}^{n*}-\frac{1}{2}\mathbf {u}^{\left( n-1\right) **}-\Delta t\mathbf {f}\times \mathbf {u}_{e,j}^{n+1},\mathbf {v}\right) \\&-\Delta t\frac{1}{\rho _{0}}\left( \nabla q_{j}^{n+1},\mathbf {v}\right) -\Delta t\frac{1}{\rho _{0}}\left( \nabla r^{n+1},\mathbf {v}\right) \\&+\Delta t\frac{1}{\rho _{0}}\mathbf {g}\left( \rho ^{n+1},\mathbf {v}\right) \end{aligned}$$

    for all \(\mathbf {v}\in \mathbf {V}\).

Finally, set \(\mathbf {u}^{n+1}=\mathbf {u}_{2}^{n+1}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galán del Sastre, P., Bermejo, R. A Lagrange-Galerkin hp-Finite Element Method for a 3D Nonhydrostatic Ocean Model. Pure Appl. Geophys. 173, 885–907 (2016). https://doi.org/10.1007/s00024-015-1185-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-015-1185-8

Keywords

Navigation