Isostatic Model and Isostatic Gravity Anomalies of the Arabian Plate and Surroundings


The isostatic modeling represents one of the most useful “geological” reduction methods of the gravity field. With the isostatic correction, it is possible to remove a significant part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomalies. Although there exist several isostatic compensation schemes, it is usually supposed that a choice of the model is not an important factor to first order, since the total weight of compensating masses remains the same. We compare two alternative models for the Arabian plate and surrounding area. The Airy model gives very significant regional isostatic anomalies, which cannot be explained by the upper crust structure or disturbances of the isostatic equilibrium. Also, the predicted “isostatic” Moho is very different from existing seismic observations. The second isostatic model includes the Moho, which is based on seismic determinations. Additional compensation is provided by density variations within the lithosphere (chiefly in the upper mantle). According to this model, the upper mantle under the Arabian Shield is less dense than under the Platform. In the Arabian platform, the maximum density coincides with the Rub’ al Khali, one of the richest oil basin in the world. This finding agrees with previous studies, showing that such basins are often underlain by dense mantle, possibly related to an eclogite layer that has caused their subsidence. The mantle density variations might be also a result of variations of the lithosphere thickness. With the combined isostatic model, it is possible to minimize regional anomalies over the Arabian plate. The residual local anomalies correspond well to tectonic structure of the plate. Still very significant anomalies, showing isostatic disturbances of the lithosphere, are associated with the Zagros fold belt, the collision zone of the Arabian and Eurasian plates.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Amante, C. and B. W. Eakins (2008) ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce, Boulder, CO, August 2008.

  2. Audet, P., and R. Bürgmann, (2011) Dominant role of tectonic inheritance in supercontinent cycles, Nat. Geosci., 4, 184–187. doi:10.1038/NGEO1080.

  3. Beyer L.A., Robbins S.L. and Clutson F.G., (1985) Basic data and preliminary density and porosity profiles for twelve borehole gravity surveys made in the Los Angeles, San Joaquin, Santa Maria and Ventura Basins, California. U.S. Geological Survey Open File Report, 85–42, 67 pp.

  4. Bouman, J., Ebbing, J., Meekes, S., Abdul Fattah, R., Fuchs, M., Gradmann, S., Haagmans, R., Lieb, V., Schmidt, M., Dettmering, D., Bosch, W. (2013). GOCE gravity gradient data for lithospheric modeling. International Journal of Applied Earth Observation and Geoinformation, doi:10.1016/j.jag.2013.11.001.

  5. Braitenberg, C. and Ebbing, J., (2009a). The GRACE-satellite gravity field in analysing large scale, cratonic or intracratonic basins. Geophysical Prospecting, 57, 559–571. doi:10.1111/j.1365-2478.2009.00793.x.

  6. Braitenberg, C., Ebbing, J (2009b) New insights into the basement structure of the west-Siberian basin from forward and inverse modelling of Grace satellite gravity data,. J. Geophysical Res., 114, B06402, doi:10.1029/2008JB005799, 2009.

  7. Carlson R.L., Johnson H.P. (1994) On modeling the thermal evolution of the oceanic upper mantle: An assessment of the cooling plate model. J. Geoph. Res., 99, 3201–3214.

  8. Chen, B., M. K. Kaban, S. El Khrepy, and N. Al-Arifi (2015), Effective elastic thickness of the Arabian plate: Weak shield versus strong platform. Geophys. Res. Lett., 42, 3298–3304. doi:10.1002/2015GL063725.

  9. Ebbing J., Braitenberg C. and Götze H.-J. (2006) The lithospheric density structure of the Eastern Alps, Tectonophysics 414, 145–155.

  10. Ebbing, J., Bouman, J., Fuchs, M., Lieb, V., Haagmans, R., Meekes, J.A.C. and Abdul Fattah R., 2013. Advancements in satellite gravity gradient data for crustal studies. The Leading Edge, (8), 900–906.

  11. Ebbing J, Braitenberg C. and Wienecke S. (2007) Insights into the lithospheric structure and the tectonic setting of the Barents Sea region from isostatic considerations, Geophys. J. Int., Vol. 171, pp. 1390–1403, doi:10.1111/j.1365-246X.2007.03602.x.

  12. Evans P, Crompton W (1946) Geological factors in gravity interpretation illustrated by evidence from India and Burma. Quarterly Journal of the Geological Society of London 407; 102, Part 3: 211–249.

  13. Förste C., S. Bruinsma, F. Flechtner, J.-C. Marty, C. Dahle, O. Abrykosov, J.-M. Lemoine, H. Neumayer, F. Barthelmes, R. Biancale, R. König (2013). Eigen-6c3—a new combined global gravity field model including GOCE data up to degree and order 1949 of GFZ Potsdam and GRGS Toulouse Geophys. Res. Abstr. EGU Gen. Assembl., 15(2013), pp. 4077–4081.

  14. Forte AM, Peltier WR (1987) Plate tectonics and aspherical earth structure: The Importance of poloidal-toroidal coupling. Journal of Geophysical Research 92:3645. doi:10.1029/JB092iB05p03645.

  15. Gettings M.E., Blank H.R. Jr., Mooney W.D., Healey J.H. (1986) Crustal structure of southwestern Saudi Arabia. J. Geoph. Res., 91, 6491–6512.

  16. Heck B., Seitz K. (2007) A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modeling. J. Geodesy, 81, 121–136.

  17. Jachens R.C. and Moring C., (1990), Maps of the thickness of Cenozoic deposits and the isostatic residual gravity over basement for Nevada, U.S. Geological Survey Open File Report, 90–404, 15 p.

  18. Kaban M.K. and W.D. Mooney, (2001) Density structure of the lithosphere in the Southwestern United States and its tectonic significance. J. Geophys. Res. 106(B1), 721–740.

  19. Kaban M. K., P. Schwintzer, Ch. Reigber, (2004) A new isostatic model of the lithosphere and gravity field, Journal of Geodesy 78, 368–385.

  20. Kaban M.K., P. Schwintzer and S.A. Tikhotsky (1999): Global isostatic residual geoid and isostatic gravity anomalies.: Geophys. J. Int., 136, 519–536.

  21. Koulakov, I. (2011), High-frequency P and S velocity anomalies in the upper mantle beneath Asia from inversion of worldwide traveltime data, J. Geophys. Res., 116, B04301, doi:10.1029/2010JB007938.

  22. Langenheim V.E. and Jachens R.C., (1996), Gravity data collected along the Los Angeles regional seismic experiment (LARSE) and preliminary model of regional density variations in basement rocks, southern California, U.S. Geological Survey Open File Report, 96–682, 25 p.

  23. Laske, G., Masters., G., Ma, Z., Pasyanos, M., (2013). Update on CRUST1.0—A 1-degree Global Model of Earth’s Crust. Geophys. Res. Abstracts, 15, Abstract EGU2013-2658, 2013.

  24. Mooney, W.D, Kaban, M.K., (2010). The North American Upper Mantle: Density, Composition, and Evolution, J. Geophys. Res., 115, B12424, doi:10.1029/2010JB000866.

  25. NOOA (2010).

  26. Perotti C.R., S. Carruba, M. Rinaldi, G. Bertozzi, L. Feltre and M. Rahimi (2011). The Qatar–South Fars Arch Development (Arabian Platform, Persian Gulf): Insights from Seismic Interpretation and Analogue Modelling, New Frontiers in Tectonic Research—At the Midst of Plate Convergence, Dr. Uri Schattner (Ed.), ISBN: 978- 953-307-594-5, InTech, Available from:

  27. Rabbel W., Kaban M., Tesauro M. (2013). Contrasts of seismic velocity, density and strength across the Moho. Tectonophysics, 609, 8 December 2013, Pages 437–455.

  28. Schaeffer, A. J., and S. Lebedev (2013), Global shear-speed structure of the upper mantle and transition zone, Geophys. J. Int., 194(1), 417–449.

  29. Simpson R.W., Jachens R.C., Blakely R.J. and Saltus R.W. (1986) A new isostatic residual gravity map of the conterminous United States with a discussion on the significance of isostatic residual anomalies: J. Geoph. Res., 91, p. 8348–8372, 1986.

  30. Snyder D.B., and Barazangi M. (1986). Deep crustal structure and flexure of the Arabian plate beneath the Zagros collisional mountain belt as inferred from gravity observations. Tectonics, 5, 361–373.

  31. Stern R.J. and Johnson P. (2010) Continental lithosphere of the Arabian Plate: A geologic, petrologic, and geophysical synthesis. Earth-Science Reviews, 101, 29–67.

  32. Stolk W., Kaban M.K., Beekman F., Tesauro M., Mooney W.D., Cloetingh S. (2013). High resolution regional crustal models from irregularly distributed data: Application to Asia and adjacent areas. Tectonophysics, 602, 55–68.

  33. Tesauro M., M.K. Kaban, S. Cloetingh (2008) EuCRUST-07: A new reference model for the European crust. Geoph. Res. Let., V. 35, doi:10.1029/2007GL032244.

  34. Tesauro M., M.K. Kaban, S. Cloetingh (2009): How rigid is Europe’s lithosphere? Geophys. Res. Lett., 36, L16303, doi:10.1029/2009GL039229.

  35. Tesauro, M., M.K. Kaban, S.A.P.L. Cloetingh (2013). Global model for the lithospheric strength and effective elastic thickness. Tectonophysics, 602, 78–86.

Download references


The authors extend their appreciation to the Deanship of Scientific Research at King Saud University (Saudi Arabia) for funding the work through the research group project (RG -1435-027). We also thank the editor and anonymous reviewers for very constructive comments, which helped to improve this paper. The results of this study in digital form can be provided upon request from GFZ Potsdam.

Author information



Corresponding author

Correspondence to Mikhail K. Kaban.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaban, M.K., El Khrepy, S. & Al-Arifi, N. Isostatic Model and Isostatic Gravity Anomalies of the Arabian Plate and Surroundings. Pure Appl. Geophys. 173, 1211–1221 (2016).

Download citation


  • Isostatic gravity anomalies
  • Density structure of the upper mantle
  • Moho
  • Sedimentary basins
  • Gravity modeling