Advertisement

Pure and Applied Geophysics

, Volume 173, Issue 9, pp 3125–3140 | Cite as

Influences of Ice Crystal Number Concentrations and Habits on Arctic Mixed-Phase Cloud Dynamics

  • Muge Komurcu
Article

Abstract

Mixed-phase clouds are frequently present in the Arctic atmosphere, and strongly affect the surface energy budget. In this study, the influences of ice crystal number concentrations and crystal growth habits on the Arctic mixed-phase cloud microphysics and dynamics are investigated for internally and externally driven cloud systems using an eddy-resolving model. Separate simulations are performed with increasing ice concentrations and different ice crystal habits. It is found that the habit influence on cloud microphysics and dynamics is as pronounced as increasing the ice crystal concentrations for internally driven clouds and more dominant for externally driven clouds. Habit influence can lead to a 10 % reduction in surface incident longwave radiation flux. Sensitivity tests are performed to identify the interactions between processes affecting cloud dynamics that allow for persistent clouds (i.e., the radiative cooling at cloud top, ice precipitation stabilization at cloud-base). When cloud-base stabilization influences of ice precipitation are weak, cloud dynamics is more sensitive to radiative cooling. Additional sensitivity simulations are done with increasing surface latent and sensible heat fluxes to identify the influences of external forcing on cloud dynamics. It is found that the magnitude of cloud circulations for an externally driven cloud system with strong precipitation and weak surface fluxes is similar to a weakly precipitating, optically thick, internally driven cloud. For cloud systems with intense ice precipitation obtained through either increasing ice crystal concentrations or assuming ice crystal shapes that grow rapidly and fall fast, the cloud layer may collapse despite the moistening effect of surface fluxes.

Keywords

Mixed-phase clouds Ice crystal number concentrations Ice crystal habits Cloud dynamics Cloud ice 

Notes

Acknowledgments

M. Komurcu would like to thank Jerry Y. Harrington, Johannes Verlinde and Eugene E. Clothiaux for treasured discussions and Alexander E. Avramov and Jonathan L. Petters for assistance with RAMS.

References

  1. Avramov, A., and J. Y. Harrington (2010), Influence of parameterized ice habit on simulated mixed phase Arctic clouds, J. Geophys. Res., 115, D03205, doi: 10.1029/2009JD012108.
  2. Avramov, A., A. S. Ackerman, A. M. Fridlind, B. van Diedenhoven, G. Botta, K. Aydin, J. Verlinde, A. V. Korolev, J. W. Strapp, G. M. McFarquhar, R. Jackson, S.D. Brooks, A. Glenn, M. Wolde, (2011), Toward ice formation closure in Arctic mixed-phase boundary layer clouds during ISDAC, J. Geophys. Res., 116, D00T08, doi: 10.1029/2011JD015910.
  3. Bergeron, T. (1935), On the physics of clouds and precipitation, in Proces Verbaux de l’Association de Météorologie, pp. 156–178, International Union of Geodesy and Geophysics, Paris, Fr. doi: 10.1175/15200450(1986)025<1658:NSOTEO>2.0.CO;2.
  4. Cotton, W. R. and R. A. Pielke, R. L. Walko, G. E. Liston, C. J. Tremback, H. Jiang, R. L. McAnelly, J. Y. Harrington, M.E. Nicholls, G. G. Carrio, J. P. McFadden, (2003), RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 5–29, doi: 10.1007/s00703-001-0584-9.
  5. Deardorff, J. W., (1980), Stratocumulus-capped mixed layers derived from a three- dimensional model. Bound. Layer Meteor., 18, 495–527, doi: 10.1007/BF00119502.
  6. Findeisen, W. (1938), Kolloid-meteorologische Vorgänge bei Neiderschlags-bildung, Meteorol. Z., 55, 121–133.Google Scholar
  7. Fridlind, A. M., A. S. Ackerman, G. McFarquhar, G. Zhang, M. R. Poellot, P. J. DeMott, A. J. Prenni, and A. J. Heymsfield, (2007), Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment (M-PACE): Part II, Model results. J. Geophys. Res., 112, D24202, doi: 10.1029/2007JD008646.
  8. Fu Q., and K. N. Liou, (1992), On the correlated k-distribution method for radiative transfer in nonhomogenous atmospheres. J. Atmos. Sci., 49, 2139–2156, doi: 10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2.
  9. Harrington, J. Y., T. Reisin, W. R. Cotton, and S. M. Kreidenweis, (1999), Cloud resolving simulations of Arctic stratus—Part II: Transition-season clouds. Atmos. Res., 51, 45–75, doi: 10.1016/S0169-8095(98)00098-2.
  10. Harrington, J. Y. and P. Q. Olsson, (2001a), On the potential influence of ice nuclei on surface forced marine stratocumulus cloud dynamics. J. Geophys. Res., 106, 27473–27484, doi: 10.1029/2000JD000236.
  11. Harrington, J. Y. and P. Q. Olsson, (2001b): An LES study of ice microphysical influences on roll cloud structure and dynamics during off-ice flow. In Proceedings, Sixth Conference on Polar Meteorology and Oceanography, American Meteorological Society, 14–18 May, San Diego, California.Google Scholar
  12. Klein, S., R. McCoy, H. Morrison, A. Ackerman, A. Avramov, G. deBoer, M. Chen, J. Cole, A. DelGenio, M. Falk, M. Foster, A. Fridlind, J. C. Golaz, T. Hashino, J. Harrington, C. Hoose, M. Khairoutdinov, V. Larson, X. Liu, Y. Luo, G. McFarquhar, S. Menon, R. Neggers, S. Park, M. Poellot, K. Salzen, J. Schmidt, I. Sednev, B. Shipway, M. Shupe, D. Spangenberg, Y. Sud, D. Turner, D Veron, G. Walker, Z. Wang, A. Wolf, S. Xie, K.-M. Xu, F. Yang, and G. Zhang, (2009), Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud. Quart. J. Roy. Meteor. Soc., 135, 979–1002. doi: 10.1002/qj.416.
  13. Komurcu, M., T. Storelvmo, I. Tan, U. Lohmann, Y. Yun, J. E. Penner, Y. Wang, X. Liu, and T. Takemura (2014), Intercomparison of the cloud water phase among global climate models, J. Geophys. Res. Atmos., 119, 3372–3400, doi: 10.1002/2013JD021119.
  14. Lilly, D. K., (1968), Models of cloud-topped boundary layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292–309. doi: 10.1002/qj.49709440106.
  15. Meyers, M. P., P. J. Demott, and W. R. Cotton, (1992), New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor, 31, 708–721, doi: 10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2.
  16. Meyers, M. P., L. Walko, J. Y. Harrington, and W. R. Cotton, (1997): New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45, 3–39, doi: 10.1016/S0169-8095(97)00018-5.
  17. Mitchell, D. L., (1996), Use of mass- and area-dimensional power laws for determining Precipitation Particle Terminal Velocities. J. Atmos. Sci., 53, 1710–1723, doi: 10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.
  18. Moeng, C-H., W. R. Cotton, B. Stevens, C. Bretherton, H. A. Rand, A. Chlond, M. Khairoutdinov, S. Krueger, W. S. Lewellen, M. K. MacVean, J. R. M. Pasquier, A. P. Siebesma, R. I. Sykes, (1996), Simulation of a Stratocumulus-Topped Planetary Boundary Layer: Intercomparison among Different Numerical Codes, Vol. 77, 261–278, doi: 10.1175/1520-0477(1996)077<0261:SOASTP>2.0.CO;2.
  19. Moeng, C-H., J. C. McWilliams, R. Rotunno, P. P. Sullivan, J. Weil, (2004), Investigating 2D Modelling of Atmospheric Convection in PBL, J. Atmos. Sci., 61, 889–903, doi: 10.1175/1520-0469(2004)061<0889:IDMOAC>2.0.CO;2.
  20. Morrison H., P. Zuidema, A. S. Ackerman, A. Avramov, G. de Boer, J. Fan, A. M. Fridlind, T. Hashino, J. Y. Harrington, Y. Luo, M. Ovchinnikov, B. Shipway, (2011), Intercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during SHEBA/FIRE-ACE, J. Adv. Model. Earth Syst., 3, M06003, doi: 10.1029/2011MS000066.
  21. Morrison, H., de Boer, G., G. Feingold, J.Y. Harrington, M.D. Shupe and K. Sulia (2012): Resilience of Persistent Arctic Mixed-Phase Clouds, Nature Geosci., 5, 11–17, doi:  10.1038/NGEO1332.
  22. Ovchinnikov, M., A. Korolev, and J. Fan (2011), Effects of ice number concentration on dynamics of a shallow mixed-phase stratiform cloud, J. Geophys. Res., 116, D00T06, doi: 10.1029/2011JD015888, [printed 117(D1), 2012].
  23. Pinto, J.O., 1998: Autumnal mixed-phase cloudy boundary layers in the Arctic. J. Atmos. Sci., 55, 2016–2038, doi: 10.1175/1520-0469(1998)055,2016:AMPCBL.2.0.CO;2.
  24. Prenni, A. J., J. Y. Harrington, M. Tjernstrom, P. J. DeMott, A. Avramov, C. N. Long, S. M. Kreidenweis, P. Q. Olsson, and J. Verlinde, (2007), Can ice-nucleating aerosols affect Arctic seasonal climate? Bull. Am. Meteorol. Soc., 88, 541–550, doi: 10.1175/BAMS-88-4-541.
  25. Prenni, A. J., P. J. Demott, D. C. Rogers, S. M. Kreidenweis, G. M. McFarquhar, G. Zhang, M. R. Poellot, (2009), Ice nuclei characteristics from M-PACE and their relation to ice formation in clouds. Tellus B, 61: 436–448, doi: 10.1111/j.1600-0889.2009.00415.x.
  26. Schweiger, A. J., R. W. Linsay, S. Vavrus, and J. A. Francis (2008), Relationships between Arctic sea ice and clouds during autumn, J. Clim., 21, 4799–4810, doi: 10.1175/2008JCLI2156.1.
  27. Shupe M., P. Kollias, P. O. G. Persson, G. M. McFarquhar, (2008), Vertial motions in Arctic mixed-phase stratiform clouds. J. Atmos. Sci., 65, 1304–1322, doi: 10.1175/2007JAS2479.1.
  28. Solomon, A., M. D. Shupe, P. O. G., Persson, and H. Morrison, (2011), Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion, Atmos. Chem. Phys. Discuss., 11, 13469–13524, doi: 10.5194/acpd-11-13469-2011.
  29. Stevens, B., W. R. Cotton, G. Feingold, C. H. Moeng, (1998), Large eddy simulations of strongly precipitating, shallow, stratocumulus-topped boundary layers. J. Atmos. Sci. 55, 3616–3638, doi: 10.1175/1520-0469(1998)055<3616:LESOSP>2.0.CO;2.
  30. Verlinde J., J. Y. Harrington, G. M. McFarquar, V. T. Yanuzzi, A. Avramov, S. Greenberg, N. Johnson, G. Zhang, M. R. Poellot, J. H. Mather, D. D. Turner, E. W. Eloranta, B. D. Zak, A. J. Prenni. J. S. Daniel, G. L. Kok, D. C. Tobin, R. Holz, K. Sassen, D. Spangenberg, P. Minnis, T. P. Tooman, M. D. Ivey, S. J. Richardson, C. P. Bahrmann, M. Shuoe, P. J. DeMott, A. J. Heymsfield and R. Schofield, (2007), The mixed-phase arctic cloud experiment, Bull. Am. Meteorol. Soc., February, 205–221, doi: 10.1175/BAMS-88-2-205.
  31. Young, K. C. (1974), The role of contact nucleation in ice phase initiation in clouds, J. Atmos. Sci., 31, 768–776.Google Scholar
  32. Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, (1995), New RAMS cloud microphysics parametrization. Part 1. The single-moment scheme. Atmos. Res., 38, 29–62, doi: 10.1016/0169-8095(94)00087-T.
  33. Wegener, A. (1911), Thermodynamik der Atmosphäre, 331 pp., Leipzig.Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Earth Systems Research CenterUniversity of New HampshireDurhamUSA

Personalised recommendations