Skip to main content

Attenuation Characteristics of Body-Waves for the Bilaspur Region of Himachal Lesser Himalaya


The attenuation characteristics around Bilaspur region of the Himachal Lesser Himalaya have been estimated adopting extended-coda-normalization method, and using a data set of 41 local events (0.5 < M L ≤ 2.9) that occurred in the region from May 2013 to March 2014. The frequency-dependent relations governing the quality factors of P-waves (Q α ) and S-waves (Q β ) in the frequency range from 1.5 to 24 Hz are: (Q α ) = (43 ± 4) f 1.30±0.04 and Q β  = (79 ± 6) f 1.25±0.02. The average estimates of (Q α ) and (Q β ) are found to vary from 71 and 125 at 1.5 Hz to 2901 and 4243 at 24 Hz, respectively. The (Q α ) and (Q β ) estimates are compared to the similar estimates obtained for the other seismically active regions of the Himalaya. It is found that for the various Himalayan regions, the (Q α ) estimates at 1 Hz vary between 22 (for the Kumaon Himalaya) and 97 (for the northwest Himalaya), whereas (Q β ) estimates range between 63 (for the Garhwal Himalaya) and 127 (for the northwest Himalaya). For the Bilaspur region, the (Q β )/(Q α ) ratio is greater than unity and varies between 1.84 and 1.45 in the frequency range from 1 to 24 Hz. The region-specific attenuation relations can be adopted for estimating earthquake source parameters, simulating strong ground motion and assessing seismic hazard for the Bilaspur region of Himachal Lesser Himalaya.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  • Anderson, D. L., Ben-Menahem, A., and Archambeau, C. B. (1965), Attenuation of seismic energy in the upper mantle, J. Geophys. Res. 70, 1441–1448.

  • Aki, K. (1969), Analysis of seismic Coda of local earthquakes as scattered waves, J. Geophys. Res. 74, 615–631.

  • Aki, K., and Chouet, B. (1975), Origin of the Coda waves: Source attenuation and scattering effects, J. Geophys. Res. 80, 3322–3342.

  • Aki, K. (1980), Attenuation of shear waves in the lithosphere for frequencies from 0.05 to 25 Hz, Phys. Earth Planet. Inter. 21, 50–60.

  • Aki, K. (1981), Source and scattering effects on the spectra of small local earthquakes, Bull. Seism. Soc. Am. 71, 1687–1700.

  • Abdel‐Fattah, A. K. (2009), Attenuation of body waves in the crust beneath the vicinity of Cairo Metropolitan area Egypt using Coda normalization method, Geophys. J. Int. 1761, 126–134.

  • Biot, M. A., (1956a), Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range, J. Acoust. Sot. Am. 28, 168–178.

  • Biot, M. A., (1956b), Theory of propagation of elastic waves in a fluid-saturated porous solid. III. High frequency range, J. Acoust. Sot. Am. 28, 1799191.

  • Bianco, F., Castellano, M., Del Pezzo, E., and Ibanez, J. M. (1999), Attenuation of short-period seismic waves at Mt. Vesuvius, Italy, Geophysical Journal International. 138, 67–76.

  • Campillo, M., and Plantet, J. L. (1991), Frequency dependence and spatial distribution of seismic attenuation in France: experimental results and possible interpretations, Phys. Earth Planet. Inter. 67, 48–64.

  • Chen, K. C., Chiu, J. M., and Yang, Y. T. (1994), Q P Q S relation in the sedimentary basin of the upper Mississippi Embayment using converted phases, Bull. Seism. Soc. Am. 84, 1861–1868.

  • Chung, T. W., and Sato, H. (2001), Attenuation of high-frequency P and S waves in the crust of southeastern South Korea, Bull. Seism. Soc. Am. 91, 1867–1874.

  • Chung, T. W., and Lee, K. (2003), A study of high-frequency Q 1 Lg in the crust of South Korea, Bull. Seism. Soc. Am. 93, 1401–1406.

  • Chung, T. W., Park, Y. K., Kang, I. B., and Lee, K. (2005), Crustal Q 1 Lg in South Korea using the source pair/receiver pair method, Bull. Seism. Soc. Am. 95, 512–520.

  • Castro, R. R., Massa, M., Augliera, P., and Pacor, F. (2008), Body-wave attenuation in the region of Garda, Italy, Pure Appl. Geophys. 1657, 1351–1366.

  • Demets, C., Gordon, R. G., Argus, D. F., and Stein, S. (1990), Current Plate Motions, Geophys. J. Iner. 101, 425–478.

  • Fehler, M., and Sato, H. (2003), Coda, Pure applied geophysics 160, 541–554.

  • Gupta, S. C., and Kumar, A. (1998), Qc and Qb Estimates in the Garhwal Himalaya using Strong Motion Records of Uttarkashi Earthquake, XI Symposium on Earthquake Engineering, University of Roorkee, Roorkee 1, Dec. 17–19, 75–83.

  • Gupta, S. C. (1999), Seismic Wave Attenuation Characteristics of Three Indian Regions, Ph. D. thesis, University of Roorkee, Roorkee, 200.

  • GSI (2000), Seismotectonic Atlas of India and its Environs, Geol. Surv. India, Sp. Pub., P. L. Narula, S. K. Acharya and J. Banerjee (eds.).

  • Giampiccolo, E., Gresta, S., and Ganci, G. (2003), Attenuation of body waves in southeastern Sicily (Italy), Physics of the Earth and Planetary Interior 135, 267–279.

  • Hermann, R. (1980), Q estimates using Coda of local earthquakes, Bull. Seism. Soc. Am. 70, 447–468.

  • Herrmann, R. B., and Kijko, A. (1983), Modelling some empirical vertical component Lg relations, Bull. Seism. Soc. Am. 73, 157–171.

  • Hough, S. E., and Anderson, J. G. (1988), High-frequency spectra observed at Anza, California: implications for Q structure, Bull. Seism. Soc. Am. 78, 692–707.

  • Havskov, J. and Ottemoller, L. (2003), SEISAN: The Earthquake Analysis Softwares for Windows, Solaris and Linux, Version 8.0, Institute of Solid Earth Physics, University of Bergen, Norway.

  • Hazarika, P., Kumar, M. R., and Kumar, D. (2013), Attenuation character of seismic waves in Sikkim Himalaya, Geophys. J. Int. 195, 544–557.

  • IS (2002), IS 1893–2002 (Part 1), Indian Standard Criteria for Earthquake Resistant Design of Structures, Part 1—General Provisions and Buildings, Bureau of Indian Standards, New Delhi.

  • Imtiyaz, A. P., Preeti, Y., and Nagaraj, K. (2012), Attenuation of P, S and Coda Waves in the NW-Himalayas, India, International Journal of Geosciences 3, 179–191.

  • Johnston, D. H., Tokstoz, M. N., and Timur, A. (1979), Attenuation of seismic waves in dry and saturated rocks: II. Mechanisms, Geophysics 44, 691–711.

  • Knopoff, L. (1964), Q, Rev. Geophys. 2, 625–660.

  • Kim, K. D., Chung, T. W., and Kyung, J. B. (2004), Attenuation of high-frequency P and S waves in the crust of Choongchung provinces, Central South Korea, Bull. Seism. Soc. Am. 94, 1070–1078.

  • Kumar, N., Mate, S., and Mukhopadhyay, S. (2014), Estimation of Q p and Q s of Kinnaur Himalaya, Journal of Seism. 18, 47–59.

  • Kumar, R., Gupta, S.C., and Kumar, A. (2014), Attenuation characteristics of seismic body waves for the crust of lower Siang region of Arunachal Himalaya, Int. J Adv. Research 2(6), 742–755.

  • Le Fort, P. (1975), Himalayas: The colloided range. Present knowledge of the continental arc, American Journal Science 275-A, 1–44.

  • Lienert, B. R., Berg, E., and Frazer, L. N. (1986), HYPOCENTER: An earthquake location method using centered, scaled, and adaptively damped least squares, Bull. Seismol. Soc. Am 76(3), 771–783.

  • Lienert, B. R., and Havskov, J. (1995), A computer program for locating earthquakes both locally and globally, Seism. Res. Lett. 66(5), 26–36.

  • Lay, T., and Wallace, T. C. (1995), Modern Global Seismogy. Academic Press, London.

  • Mavko, G., and Nur, A. (1975), Melt squirt in the aesthenosphere, J. Geophys. Res. 80, 1444–1438.

  • Mitchell, B. J. (1981), Regional variation and frequency dependence of Q in the crust of the United States, Bull. Seism. Soc. Am. 71, 1531–1538.

  • Molnar, P., and Chen, W. P. (1983), Focal depths and Fault-Plane Solutions of Earthquakes under the Tibetian Plateau, J. Geophys. Res. 88, 1180–1196.

  • Masuda, T. (1988), Corner frequencies and Q values of P waves by simultaneous inversion technique, Sci. Rep. to Univ. Ser. 5. Geophys. 31, 101–125.

  • Mitchell, B. J. (1995), Anelastic structure and evolution of the continental crust and upper mantle from seismic surface wave attenuation, Reviews of Geophysics 334, 441–462.

  • Mahood, M., Hamzehloo, H., and Doloei, G. J. (2009), Attenuation of high frequency P and S waves in the crust of the East-Central Iran, Geophys. J. Int. 179, 1669–1678.

  • Nakata, T. (1989), Active faults of the Himalaya of India and Nepal. In Tectonics of the Western Himalaya (Malinconico, L. L., Jr, and Lillie, R. J., eds.), Geol. Soc. America Spl. Paper (Geological Society of America, Colorado, 1989) 232, 243–264.

  • Negi, S. S., Paul, A., Joshi, A., and Kamal (2014), Body Wave Crustal Attenuation Characteristics in the Garhwal Himalaya, India, Pure Appl. Geophys. doi:10.1007/s00024-014-0966-9.

  • O’connell, R. J., and Budiansky, B. (1977), Viscoelastic properties of fluid saturated cracked solids, J. Geophys. Res. 82, 5719–5736.

  • Patane, D., Ferrucci, F., and Gresta, S. (1994), Spectral features of microearthquake in volcanic areas: attenuation in the crust and amplitude response of the site at Mt. Etna, Bull. Seism. Soc. Am. 84, 1842–1860.

  • Padhy, S. (2009b), Characteristics of body wave attenuations in the Bhuj crust, Bull. Seism. Soc. Am. 99, 3300–3313.

  • Rautian, T. G., and Khalturin, V. I. (1978), The use of the Coda for the determination of the earthquake source spectrum, Bull. Seism. Soc. Am. 68, 923–948.

  • Rebollar, C. J., Traslosheros, C., and Alvarez, R. (1985), Estimates of seismic wave attenuation in Northern Baja California, Bull. Seism. Soc. Am. 75, 1371–1382.

  • Rai, S. S., Priestley, I. K., Gaur, V. K., Mitra, S., Singh, M. P., and Searle, M. (2006), Configuration of the Indian Moho beneath the NW Himalaya and Ladakh, Geophysical Research Letters 33.

  • Stoll, R. D., and Bryan, G. M. (1970), Wave attenuation in saturated sediments, J. Acous. Sot. Am., 47, 1440–1447.

  • Saxena, M. N. (1971), Geological classification and the tectonic history of the Himalaya. Proc. Ind. Nat. Sci. Acad 37, 228–254.

  • Solomon, S. C. (1973), Shear wave attenuation and melting beneath the mid-Atlantic Ridge, J. geophys Rcs. 78, 6044–6059.

  • Sato, H., and Matsumura, S. (1980), Q 1 value for S-waves under the Kanto district in Japan, Zisin 33, 541–543.

  • Seeber, L., Armbruster, J. G., and Quitt-Meyer, R. C. (1981), Seismicity and continental subduction in the Himalayan arc. In Zagros, Hindu-Kush, Himalaya, Geodynamic Evolution, Geodyn. Am. Geophys. Union 3, 215–42.

  • Stewart, R. C. (1984), Q and the rise and fall of a seismic pulse, Geophysical Journal of Royal Astronomical Society 76, 793–805.

  • Srikanita, S. V., and Bhargava, O. N. (1998), Geology of Himachal Pradesh: Bangalore, Geologic Society of India.

  • Sato, H., and Fehler, M. C. (1998), Seismic wave propagation and scattering in the heterogeneous earth, Springer-Verlag, New York 308.

  • Sharma, B., Teotia, S. S., and Kumar, D. (2006), Frequency Dependent Attenuation of High Frequency P and S Waves in the Upper Crust of Garhwal, Himalaya, 6th International Conference & Exposition on Petroleum Geophysics, Kolkata.

  • Sharma, B., Teotia, S. S., and Kumar, D. (2007), Attenuation of P, S and Coda waves in Koyna region India., J. Seism. 11, 327–344.

  • Sharma, B., Gupta, A. K., Devi, D. K., Kumar, D., Teotia, S. S., and Rastogi, B. K. (2008), Attenuation of high-frequency seismic waves in Kachchh Region, Gujarat, India, Bull. Seism. Soc. Am. 985, 2325–2340.

  • Sharma, B., Teotia, S. S., Kumar, D., and Raju, P. S. (2009), Attenuation of P and S waves in the Chamoli Region, Himalaya, India, Pure and applied geophysics 166(12), 1949–1966.

  • Singh, C., Singh, A., Bharathi, V. K. S., Bansal, A. R., and Chadha, R. K. (2012), Frequency-dependent body wave attenuation characteristics in the Kumaun Himalaya, Tectonophysics 524525, 37–42.

  • Toksoz, M. N., Johnston, A. H., and Timur, A. (1978), Attenuation of seismic waves in dry and saturated rocks. I. Laboratory measurements, Geophys. 44, 681–690.

  • Tripathi, J. N., Singh, P., and Sharma, M. L. (2014), Attenuation of High-Frequency P and S Waves in Garhwal Himalaya, India, Tectonophysics 636, 216–227.

  • Valdiya, K. S. (1979), An outline of the structural set-up of the Kumaon Himalaya, J. Geol. Soc. India 20, 145–157.

  • Valdiya, K. S., Joshi, D. D., Sanwal, R., and Tandon, S. K. (1984), Geomorphologic envelopment across the active main boundary thrust, an example from the Nainital Hills in Kumaun Himalaya, Journal of the Geological Society of India 25(12), 761–774.

  • Valdiya, K. S. (1987), Trans-Himadri Thrust and domal upwarps immediately south of collision zone and tectonic implications, Current Science 56, 200–209.

  • Valdiya, K.S. (1989), Trans-Himadri intracrustal fault and basement upwarps south of the Indus-Tsangpo Suture Zone, Geol. Soc. Amer. Spec. 153–168.

  • Vandana, Gupta S. C., Kumar A. and Sharma M. L. (2014), Attenuation characteristics of the Bilaspur region of Himachal Lesser Himalaya., 15th Symposium on Earthquake Engineering, IIT Roorkee, Dec. 11–13, 181.

  • Walsh, J. B. (1966), Seismic wave attenuation in rock due to friction, J. Geophys. Res. 71, 2591–2599.

  • Walsh, J. B. (1968), Attenuation in partially melted material, J. Geophys. Res. 73, 2209–2216.

  • Walsh, J. B (1969), New analysis of attenuation in partially melted rock, J. Geophys. Res. 74, 4333–4337.

  • White, J. E. (1975), Computed seismic speeds and attenuation in rocks with partial gas saturation, Geophysics 40, 224–232.

  • Wu, H., and Lees, J. M. (1996), Attenuation of Caso geothermal area, California, from wave pulse width, Bull. Seism. Soc. Am. 86, 1574–1590.

  • Yoshimoto, K., Sato, H., and Ohtake, M. (1993), Frequency-dependent attenuation of P and S waves in the Kanto area, Japan, based on the Coda normalization method, Geophys. J. Int. 114, 165–174.

Download references


We are thankful to the National Thermal Power Corporation (NTPC), Koldam, Himachal Pradesh, for sponsoring the project under which the data were collected. Thanks are due to Head, Department of Earthquake Engineering, Indian Institute of Technology, Roorkee, for providing the data and facilities to carry out this research work.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Vandana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vandana, Kumar, A. & Gupta, S.C. Attenuation Characteristics of Body-Waves for the Bilaspur Region of Himachal Lesser Himalaya. Pure Appl. Geophys. 173, 447–462 (2016).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Attenuation
  • Body waves
  • Bilaspur
  • Himachal Lesser Himalaya
  • Q α and Q β