Skip to main content
Log in

Geohazards Monitoring in Roma from InSAR and In Situ Data: Outcomes of the PanGeo Project

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Within the PanGeo project (financed by the European Commission under the 7th Framework Program), the Geological Survey of Italy (ISPRA) and the Urban Planning Department of the City of Roma developed a geodatabase and map of the geological hazards for the territory of Roma, integrating remotely sensed data (PSInSAR—Permanent Scatterer Interferometry Synthetic Aperture Radar) and in situ geological information. Numerous thematic layers, maps and inventories of hazards (e.g., landslides, sinkholes, cavities), geological and hydrogeological data added to historical and recent urbanization information were compared to the permanent scatterer (PS) data from the European Remote Sensing satellites (ERS-1/2, 1992–2000) and ENVISAT (2002–2005) descending scenes, in order to produce a ground stability layer (GSL). Based on the PS data, most of the territory appears stable (almost 70 % of PS velocities are within ±1 mm/year). About 14 % of the PSs show positive line-of-sight (LOS) velocities (measured along the LOS of the satellite) between 1 and 3 mm/year and more than 2 % exceed 3 mm/year; more than 11 % of PSs show negative LOS velocities between −1 and −3 mm/year, while about 3 % exceed −3 mm/year (with tens of the PSs showing velocities over −20 mm/year). The GSL is comprised of polygons or multi-polygons (multipart polygons grouping individual polygons under a single identifier geohazard) enclosing areas where geohazards have been pointed out by PS data and/or in situ surveys (observed instabilities), and by polygons enclosing areas potentially affected by geohazards, based on the available knowledge of the territory (potential instabilities). In Roma’s GSL, 18 multi-polygons (covering ca. 600 km2) related to observed instabilities have been outlined, where ground movements could be detected through InSAR data or where landslides and sinkholes are known to have occurred. Other 13 multi-polygons (covering nearly 900 km2) concern areas where the potential occurrence of geohazards was inferred by combining geological and/or geothematic data (potential instabilities). The geohazards mapped in Roma have been: landslides, collapsible grounds, compressible grounds, groundwater abstraction, mining, man-made ground, tectonic movements, and volcanic inflation/deflation. The lattermost is the likely cause of the significant uplift observed in the Alban Hills area. However, this paper focuses on two more currently impending hazards: subsidence and sinkholes. In general, sinkhole-prone areas (areas of dense underground cavities) are hard to discern from satellite data, but can be revealed by ruling out other potential causes of observed ground movement based on in situ data. Subsiding zones are effectively detected by the available PSInSAR dataset over a total extent of about 60 km2, mostly overlapping the recent alluvial areas of the Tiber and its tributaries. PSs show a very different behaviour inside and outside the historical centre. Inside, loading by anthropogenic construction and man-made ground since ancient times has led to an almost complete consolidation of the recent river deposits, marked by modest to absent subsidence. In contrast, outside, subsidence clearly stands out, with negative LOS velocities that, although generally within several mm/year, can locally exceed −25 mm/year. PS data have provided motion information at both a regional and local scale (up to the scale of a single building). Closer to the sea, in the Tiber delta area, velocities increase, especially above recently reclaimed marsh areas, rich in peat and organic clays. Velocities can change significantly over short distances, as in the international airport area, reflecting the local stratigraphic setting. The same occurs in the two subsiding areas located within the Alban Hills volcanic complex, which is generally affected by ground uplift. As a whole, PSInSAR ground motion velocities offer a significant contribution to susceptibility and hazard recognition studies. In particular, such a method provides a fast and effective tool available to local authorities to monitor ground and building behaviour, possibly allowing for timely prevention activities, especially when coupled with appropriate in situ knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Amanti, M., Battaglini, L., Campo, V., Cipollini, C., Congi, M.P., Conte, G., Delogu, D., Ventura, R., Sonetti, C. (2007), La carta litologica d’Italia alla scala 1:100.000, Atti del VI Forum italiano di Scienze della Terra, Geoitalia 2007, Rimini.

  • Amato, A., and Chiarabba, C. (1995), Recent uplift of the Alban Hills volcano (Italy), evidence for magmatic inflation?, Geophys. Res. Lett., 22, 1985–1988.

  • Anzidei, M., Baldi, P., Casula, G., Galvani, A., Riguzzi, F. and Zanutta, A. (1998), Evidence of active crustal deformation in the Colli Albani volcanic area (Central Italy) by GPS surveys, Journal of Volcanology and Geothermal Res., 80, 55–65.

  • Anzidei, M., Rigussi, F., Stramondo, S. (2009), Current geodetic deformation of the Colli Albani volcano: A review, in The Colli Albani Volcano, Eds., R. Funiciello and G. Giordano, Special Pubblication of IAVCEI, The Geological Society of London.

  • Arangio, S., Calò, F., Di Mauro, M., Bonano, M., Marsella, M., Manunta, M. (2013), An application of the SBAS-DInSAR technique for the Assessment of structural damage in the city of Rome. Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance, 1–15. doi:10.1080/15732479.2013.833949

  • Archivio Storico Capitolino (2002), Roma in CD dal XVI al XX secolo nelle mappe e nelle vedute della Biblioteca Romana dell’Archivio Capitolino. CD-Rom realized by the Soprintendenza ai Beni Librari della Regione Lazio, GAP, Roma.

  • Autorità di Bacino del Fiume Tevere (2004), Carta geomorfologica dei corridoi fluviali del fiume Tevere e del Fiume Aniene. Piano stralcio per il tratto metropolitano del Tevere da Castel Giubileo alla foce. PS5, scala 1:25.000, Roma. http://www.abtevere.it/node/324

  • Baer, G., Schattner, U., Wachs, D., Sandwell, D., Wdonwinski, S., Frydman, S. (2002), The lowest place on Earth is subsiding : An InSAR Interferometric Synthetic Aperture Radar perspective. Geological Society of America Bulletin, 114, 12–23.

  • Bartole, R. (1984), Tectonic structures of the Latium-Campania shelf (Tyrrhenian sea). Boll. Ocean. Teor. Appl., 2, 197–230.

  • Bateson, L., Cuevas, M., Crosetto, M., Cigna, F., Schijf, M., and Evans, H. (2012), PanGeo D3.5 Production Manual. Version 1.1, 25 th July 2012. Available at: http://www.pangeoproject.eu

  • Bellotti, P., Carboni, M.G., Milli, S., Tortora, P. and Valeri, P. (1989), La piana deltizia del Fiume Tevere: analisi di facies e ipotesi evolutiva dall’ultimo low stand glaciale all’attuale. Giornale di Geologia serie 3, vol. 51/1.

  • Bellotti, P., Chiocci, F. L., Milli, S., Tortora, P. and Valeri, P. (1994), Sequence stratigraphy and depositional setting of the Tiber delta: integration of hy resolution seismics well logs and archeological data. Journ. Sedimentary Research, B 64, 416–432.

  • Bellotti, P., Milli S., Tortora, P. and Valeri, P. (1995), Physical stratigraphy and sedimentology of the late Pleistocene-Holocene Tiber delta depositional sequence. Sedimentology, 42, 617-634.

  • Berardino, P., Fornaro, G., Lanari, R. and Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geosciences and Remote Sensing, 40, 2375–2383.

  • Bersani, P. and Bencivenga, M. (2001), “Le piene del Tevere a Roma. Dal V secolo a.C. all’anno 2000”. Presidenza del Consiglio dei Ministri, Dipartimento per i Servizi Tecnici Nazionali, Servizio Idrografico e Mareografico Nazionale, pp. 100.

  • Bertoletti, E., Ciuffreda, M., Succhiarelli, C., Cipolloni, C., Comerci, V., Di Manna, P., Guerrieri, L., Vittori, E., (2013), Il Progetto Europeo PanGeo: monitoraggio dei movimenti del suolo urbanizzato di Roma Capitale mediante dati satellitari PSI. Poster session at 14a Conferenza italiana utenti ESRI, Roma 17–18 April 2013, Roma.

  • Boschi, E., Guidoboni, E., Ferrari, G., Valensise, G. and Gasperini, P. (editors) (1997), Catalogo dei Forti Terremoti in Italia dal 461 a.C. al 1990. ING – SGA Bologna, pp. 644.

  • Bozzano, F., Andreucci A., Gaeta M. and Salucci R. (2000), A geological model of the buried Tiber River valley beneath the historical centre of Roma, Bulletin of Engineering Geology and the Environment 59, 1–21.

  • Bru, G., Herrera, G., Tomás, R., Duro, J., De la Vega, R., Mulas, J. (2013), Control of deformation of buildings affected by subsidence using persistent scatterer interferometry. Structure and infrastructure engineering 9, 188–200.

  • Calzona, R. (2008), Scuola materna “Amico Ulivo”, Relazione e parere sulle condizioni statiche ed abitative, Municipio Roma XII. Roma, pp. 26 (unpublished report).

  • Campolunghi, M.P., Capelli, G., Funiciello, R., Lanzini, M. (2007), Geotechnical studies for foundation settlement in Holocenic alluvial deposits in the City of Rome (Italy). Engineering Geology, 89, 9–35.

  • Campolunghi, P., Capelli, G., Funiciello, R., Lanzini, M., Mazza, R. and Casacchia, R. (2008), Un caso esemplare: la stabilità degli edifici nell’area intorno a Viale Giustiniano Imperatore (Roma, IX Municipio). In: Funiciello, R., Praturlon, A. & Giordano, G. (eds). La geologia di Roma: dal centro storico alla periferia. Memorie Descrittive della Carta Geologica d’Italia, LXXX, (2) 195–219.

  • Capes, R. (2012), PanGeo: monitoring ground instability for local authorities. Window on GMES, GMES4Regions, Special Issue. SSN 2030–5419

  • Casagli, N., Catani, F., Del Ventisette, C. and Luzi, G. (2010), Monitoring, prediction, and early warning using ground-based radar interferometry. Landslides, 7, 291–301.

  • Castañeda, C., Gutiérrez, F., Manunta, M., Galve, J.P. (2009). DInSAR measurements of ground deformation by sinkholes, mining subsidence, and landslides, Ebro River, Spain. Earth Surface Processes and Landforms, 34, 1562–1574.

  • Cecchini, D. (2005), Rifare Città. Gangemi, Roma

  • Chiarabba, C., Amato, A., and Delaney, P.T. (1997), Crustal structure, evolution, and volcanic unrest of the Alban Hills, Central Italy, Bull. Volcanol., 59, 161–170.

  • Cigna, F., Del Ventisette, C., Liguori, V., Casagli, N. (2011), Advanced radar-interpretation of InSAR time series for mapping and characterization of geological processes. Nat. Hazards Earth Syst. Sci., 11, 865–881.

  • Cigna, F., Del Ventisette, C., Gigli, G., Menna, F., Agili, F., Liguori, V., Casagli, N. (2012a), Ground instability in the old town of Agrigento (Italy) depicted by on-site investigations and Persistent Scatterers data. Nat. Hazards Earth Syst. Sci., 12, 3589–3603.

  • Cigna, F., Osmanoğlu, B., Cabral-Cano, E., Dixon, T.H., Ávila-Olivera, J.A., Garduño-Monroy, V.H., DeMets, C., Wdowinski, S. (2012b), Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar Interferometry: a case study in Morelia, Mexico. Remote Sensing of Environment, 117, 146–161.

  • Cigna, F., Bianchini, S., Casagli, N. (2013), How to assess landslide activity and intensity with Persistent Scatterer Interferometry (PSI): the PSI-based matrix approach. Landslides, 10(3), 267–283. doi:10.1007/s10346-012-0335-7

  • Cigna, F., Lasaponara, R., Masini, N., Milillo, P., Tapete, D. (2014), Persistent Scatterer Interferometry Processing of COSMO-SkyMed StripMap HIMAGE Time Series to Depict Deformation of the Historic Centre of Rome, Italy. Remote Sens., 6, 12593–12618. doi:10.3390/rs61212593

  • Cingolani, G.B. (1692), Topografia Geometrica dell’Agro Romano.

  • Cinti, F.R., Marra, F., Bozzano, F., Cara, F., Di Giulio, G., and Boschi, E. (2008), Chronostratigraphic study of the Grotta Perfetta alluvial valley in the city of Roma (Italy): investigating possible interaction between sedimentary and tectonic processes. Annals of Geophysics, 51, no 5–6, 849–865.

  • Ciotoli, G., Corazza, A., Finoia, M.G., Nisio, S., Serafini, R., and Succhiarelli, C. (2013), Sinkholes antropogenici nel territorio di Roma Capitale. Mem Descr. Carta Geol d’It. XCIII, 143–182.

  • Closson, D., Karaki, N.A., Klinger, Y., Hussein, M.J. (2005), Subsidence and sinkhole hazards assessment in the southern Dead Sea area, Jordan. Pure and Applied Geophysics, 162, 221–248.

  • Closson, D., Karaki, N.A., Milisavljevic, N., Hallot, F., Acheroy, M. (2010), Salt dissolution-induced subsidence in the Dead Sea area detected by applying interferometric techniques to ALOS Palsar Synthetic Aperture Radar images. Geodinamica Acta, 23, 65–78.

  • Comerci, V., Cipolloni, C., Di Manna, P., Guerrieri, L., Vittori, E., Bertoletti, E., Ciuffreda M., and Succhiarelli, C., (2013), Geohazard Description for Roma. PanGeo – Enabling Access to Geological Information in Support of GMES. Seventh Framework Programme, Cooperation: Space Call 3, FP7-Space-2010-1, European Commission, Research Executive Agency, pp. 175. www.pangeoproject.eu

  • Corazza, A., Marra, F. (1995), Carta dello spessore dei terreni di riporto. In: R. Funiciello (ed.), La geologia di Roma. Il Centro Storico. Memorie Descrittive della Carta Geologica d’Italia, 50, pp. 550.

  • Corazza, A., Lanzini, M., Rosa, C., Salucci, R., (1999), Caratteri stratigrafici, idrogeologici e geotecnici delle alluvioni tiberine nel settore del centro storico di Roma. Il Quaternario, 12(2), 215–235.

  • Cosentino, D., Cipollari, P., Di Bella, L., Esposito, A., Faranda, C., Giordano, G., Mattei, M., Mazzini, I., Porreca, M. and Funiciello, R. (2009), Tectonics, sea-level changes and palaeoenvironments in the early Pleistocene of Roma (Italy). Quaternary Research, 72, 143–155.

  • De Rita, D., Funiciello, R., Parotto, M. (1988), Carta Geologica del Complesso Vulcanico dei Colli Albani (scala 1 : 50.000). Progetto Finalizzato Geodinamica, CNR, Roma.

  • De Rita, D., Milli S., Rosa, C., Zarlenga, F. and Cavinato G.P. (1994), Catastrophic eruptions and eustatic cycles: example of Latium Volcanoes. In: Large esplosive eruptions. International symposium, Roma, 24 ~ 25 May 1993. Atti dei Convegni Lincei, 112, 135–142.

  • De Rita, D., Faccenna, C., Funiciello, R. and Rosa, C. (1995), Stratigraphy and volcano-tectonics. In: Trigila (Ed.), The Volcano of the Alban Hills. Tipografia SGS, Roma, pp. 33–71.

  • Dixon, T.H., Amelung, F., Ferretti, A., Novali, F., Rocca, F., Dokka, R., et al. (2006), Space geodesy: subsidence and flooding in New Orleans. Nature, 441, 587–588.

  • EEA (2011), Mapping Guide for European Urban Atlas, EEA/EC web page 2010. Available at: http://www.eea.europa.eu/data-and-maps/data/urban-atlas/mapping-guide/urban_atlas_2006_mapping_guide_v2_final.pdf/at_download/file

  • Ezquerro, P., Herrera, G., Marchamalo, M., Tomás, R., Béjar-Pizarro, M., Martínez, R.A. (2014), Quasi-elastic aquifer deformational behavior: Madrid aquifer case study. Journal of Hydrology, 519, 1192–1204.

  • Faccenna, C., Funiciello, R., and Marra, F. (1995), Inquadramento geologico strutturale dell’area romana. Servizio Geologico Nazionale, Memorie descrittive della Carta geologica d’Italia, volume L, La geologia di Roma – Il centro storico, 31–47.

  • Ferretti, A., Prati, C. and Rocca, F. (2000a), Non-linear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry. IEEE Trans. on Geoscience and Remote Sensing, 38, 5, 2202–2212.

  • Ferretti, A., Ferrucci, F., Prati, C., Rocca, F. (2000b), SAR analysis of building collapse by means of the permanent scatterers technique. Proceedings of the 2000 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, 7, 3219–3221.

  • Ferretti, A., Prati, C. and Rocca, F. (2001), Permanent Scatterers in SAR Interferometry. IEEE Trans. on Geoscience and Remote Sensing, 39, 1, 8–20.

  • Ferretti, A., Basilico, M., Novali, F., Prati, C. (2004), Possibile utilizzo di dati radar satellitari per individuazione e monitoraggio di fenomini di sinkholes. In: Nisio, S., Panetta, S., Vita, L., (Eds.), Stato dell’arte sullo studio dei fenomeni di sinkholes e ruolo delle amministrazioni statali e locali nel governo del territorio, APAT, Roma, 415–424.

  • Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F., Rucci, A. (2011), A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens., 49, 3460–3470.

  • Fornaro, G., Serafino, F., Reale, D. (2010), 4-D SAR Imaging: The Case Study of Rome. Geoscience and Remote Sensing Letters, IEEE, 7(2), 236–240. doi:10.1109/LGRS.2009.2032133

  • Fornaro, G., Reale, D., Pauciullo, A., Zhu, X., Bamler, R. (2012), SAR Tomography: an advanced tool for spaceborne 4D radar scanning with application to imaging and monitoring of cities and single buildings. IEEE Geoscience and Remote Sensing Newsletter, Dec. 2012, 10–18.

  • Fornaro, G., Pauciullo, A., Reale, D., Verde, S. (2013), SAR Coherence Tomography: A new approach for coherent analysis of urban areas. Proc. 2013 IEEE IGARSS Conf., Melbourne, Australia, July 21–26, 73–76.

  • Fornaro, G., Pauciullo, A, Reale, D., Verde, S. (2014), Multilook SAR Tomography for 3-D Reconstruction and Monitoring of Single Structures Applied to COSMO-SKYMED Data, Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 7(7), 2776,2785. doi:10.1109/JSTARS.2014.2316323

  • Fornaro, G., Verde, S., Reale, D., Pauciullo, A. (2015), CAESAR: An Approach Based on Covariance Matrix Decomposition to Improve Multibaseline-Multitemporal Interferometric SAR Processing, Geoscience and Remote Sensing, IEEE Transactions on, 53(4), 2050–2065. doi:10.1109/TGRS.2014.2352853

  • Funiciello, R., (1995), La geologia di Roma. Il Centro Storico (Memorie Descrittive della Carta Geologica d’Italia, 50, pp. 550, Roma 1995).

  • Funiciello, R., and Parotto, M. (2001), General geological features of the Campagna Romana. The World of Elephants – International Congress – Roma.

  • Funiciello, R., Giordano, G., De Rita, D. (2003), The Albano maar lake (Colli Albani Volcano Italy): recent volcanic activity and evidence of pre-Roman Age catastrophic lahar events. Journal of Volcanology and Geothermal Research. 123, 43–61.

  • Funiciello, R., Giordano, G., Adanti, B., Giampaolo, C., Parotto, M. (2004), Walking through downtown Roma: a discovery tour on the key role of geology in the history and urban development of the city. Field Trip Guide Book D05. 32nd International Geological Congress. From the Mediterranean Area Toward a Global Geological Renaissance. Geology, Natural Hazards, and Cultural Heritage. Florence-Italy August 20–28, 2004, APAT.

  • Funiciello, R., Campolunghi, M.P., Cecili, A., Testa O. (2005), La struttura geologica dell’area romana e il Tevere. Atti dei Convegni Lincei 218, Ecosistema Roma Roma, 14–16 aprile 2004, Accademia Nazionale dei Lincei, 149–208.

  • Funiciello R., and Giordano, G. (2008a), La nuova Carta Geologica di Roma: litostratigrafia e organizzazione stratigrafica. Special volume “La geologia di Roma. Dal centro storico alla periferia”, Memorie descrittive della Carta Geologica d’Italia, 80, 39–85.

  • Funiciello, R., and Giordano, G. (2008b), Geological Map of Italy 1:50,000, sheet n. 374 “Roma” and explanatory notes. Servizio Geologico d’Italia. Se.l.c.a. Firenze, Italy.

  • Funiciello, R., Praturlon, A., and Giordano, G. (2008), La geologia di Roma: dal centro storico alla periferia. Parte Seconda. Memorie Descrittive della Carta Geologica d’Italia, LXXX, pp. 313.

  • Funiciello, R., Giordano, G. (editors) (2010), The Colli Albani volcano. Special Publications of IAVCEI, 3, 400 pp., The Geological Society, London, UK.

  • Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. (1989), Mapping small elevation changes over large areas: Differential radar interferometry. J. Geophys. Res., 94, 9183–9191.

  • Giordano, G., De Benedetti, A.A., Diana, A., Diano, G., Gaudioso, F., Marasco, F., Miceli,M., Mollo, S., Cas, R.A.F. and Funiciello, R. (2006), The Colli Albani caldera (Roma, Italy): stratigraphy, structure and petrology. In: Cas R.A.F. & Giordano G. (eds) Explosive Mafic Volcanism, Journal of Volcanology and Geothermal Research, Spec. Vol., 155, 49–80.

  • Giordano, G. (2008), I vulcani di Roma: storia eruttiva e pericolosità. Special volume “La geologia di Roma. Dal centro storico alla periferia”, Memorie descrittive della Carta Geologica d’Italia, 80, 87–95.

  • Giraudi, C. (2011), The Holocene record of environmental changes in the ‘Stagno di Maccarese’ marsh (Tiber river delta, central Italy). The Holocene, 21(B), 1233–1243. doi:10.1177/0959683612455543

  • Gutiérrez, F., Galve, J.P., Lucha, P., Castañeda, C., Bonachea, J., Guerrero, J. (2011), Integrating geomorphological mapping, trenching, InSAR and GPR for the identification and characterization of sinkholes: A review and application in the mantled evaporite karst of the Ebro Valley (NE Spain). Geomorphology, 134(1–2), 144–156.

  • Heiken, G., Funiciello, R., and De Rita, D. (2007), The Seven Hills of Roma: A Geological Tour of the Eternal City. Princeton University Press, 264 pp., ISBN: 9780691130385.

  • Herrera, G., García-Davalillo, J.C., Mulas, J., Cooksley, G., Monserrat, O., Pancioli, V. (2009a), Mapping and monitoring geomorphological processes in mountainous areas using PSI data: Central Pyrenees case study. Nat. Hazards Earth Syst. Sci., 9, 1587–1598.

  • Herrera, G., Tomás, R., López-Sánchez, J.M., Delgado, J., Vicente, F., Mulas, J., Cooksley, G., Sánchez, M., Duro, J., Arnaud, A., Blanco, P., Duque, S., Mallorquí, J.J., Vega-Panizo, R., Monserrat, O. (2009b), Validation and comparison of Advanced Differential Interferometry Techniques: Murcia metropolitan area case study. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 501–512.

  • Herrera, G., Fernández, J.A., Tomás, R., Cooksley, G., Mulas J. (2009c), Advanced interpretation of subsidence in Murcia (SE Spain) using A-DInSAR data - modelling and validation. Natural Hazards and Earth System Sciences 9, 647–661

  • Herrera, G., Tomás, R., Monells, D., Centolanza, G., Mallorqui, J.J., Vicente, F., Navarro, V. D., Lopez-Sanchez, J., Cano, M., Mulas, J., Sanabria, M. (2010), Analysis of subsidence using TerraSAR-X data: Murcia case study. Engineering Geology, 116, 284–295

  • Herrera, G., Álvarez Fernández, M.I., Tomás, R., González-Nicieza, C., Lopez-Sanchez, J. M., Álvarez Vigil, A.E. (2012), Forensic analysis of buildings affected by mining subsidence based on Differential Interferometry (Part III). Engineering Failure Analysis 24, 67–76.

  • Hilley, G.E., Bürgmann, R., Ferretti, A., Novali, F., Rocca, F. (2004), Dynamics of slow-moving landslides from permanent scatterer analysis. Science, 304(5679), 1952–1955.

  • Hooper, A., Zebker, H., Segall, P., Kampes, B. (2004), A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett., 31. doi:10.1029/2004GL021737

  • INSPIRE DS-D2.8/III-12 (2013), INSPIRE Data Specification on Natural Risk Zone – technical Guidelines, v. 3.0. Published by EC on JRC at: http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_NZ_v3.0.pdf

  • Karner, D.B., Marra, F. and Renne, P.R. (2001), The history of the Monti Sabatini and Alban Hills volcanoes: Groundwork for assessing volcanic-tectonic hazards for Roma. Journal of Volcanology and Geothermal Research, 107(1–3), 185–215.

  • Komac, B., Zorn, M. (2013), Geohazards, In Enciclopedia of Natural Hazards (ed. Bobrowsky P.T.) (Springer science Business Media B.V. 2013) p. 387. doi:10.1007/978-1-4020-4399-4

  • Lanari, R., Mora, O., Manunta, M., Mallorquì, J.J., Berardino, P. and Sansosti, E. (2004), A small baseline approach for investigating deformations on full resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens., 42(7), 1377–1386.

  • Lanciani, R. (1901), Forma Urbis Romae. Scale 1:1000, Regia Accademia dei Lincei, published in parts from 1893 to 1901.

  • Malinverno, A. and Ryan, W. (1986), Extension in the Tyrrhenian sea and shortening in the apennines as result of arc migration driven opening. Bollettino di Geofisica Teorica ed Applicata, 28, 75–156.

  • Manunta, M., Marsella, M., Zeni, G., Sciotti, M., Atzori, S. and Lanari, R. (2008). Two-scale surface deformation analysis using SBAS-DInSAR technique: a case study of the city of Rome, Italy. Int. J. Remote Sens. 29, 1665–1684. doi:10.1080/01431160701395278

  • Marra, F., and Rosa, C. (1995), Statigrafia e assetto geologico dell’area romana. Servizio Geologico Nazionale, Memorie descrittive della Carta geologica d’Italia, L, La geologia di Roma – Il centro storico, 49–112.

  • Marra, F., Carboni, M.G., Di Bella, L., Faccenna, C., Funiciello, R. and Rosa, C. (1995), Il substrato Plio - Pleistocenico nell’area romana - Boll. Soc. Geol. It., 114, 195–214.

  • Marra, F., Rosa, C., De Rita, D., and Funiciello, R. (1998), Stratigraphic and tectonic features of the middle Pleistocene sedimentary and volcanic deposits in the area of Roma. Quaternary International, 47/48, 51–63.

  • Marra, F., Freda, C., Scarlato, P., Taddeucci, J., Karner, D. B., Renne, P. R., Gaeta, M., Palladino, D. M., Trigila, R., and Cavarretta, G. (2003), Post-caldera activity in the Alban Hills volcanic district (Italy): 40Ar/39Ar geochronology and insights into magma evolution. Bull. Volcanol., 65(4), 227.

  • Mattei, M., Funiciello, R. and Parotto, M. (2008), Roma e contesto geodinamico recente dell’Italia Centrale. Special volume “La geologia di Roma. Dal centro storico alla periferia”, Memorie descrittive della Carta Geologica d’Italia, 80, 13–24.

  • Mattei, M., Conticelli, S. and Giordano, G. (2010), The Tyrrhenian margin geological setting: from the Apennine orogeny to the K-rich volcanism. In Funiciello, R. and Giordano, G. (eds): The Colli Albani Volcano. Special Publications of IAVCEI, The Geological Society, London, UK, 3, 7–27.

  • Meisina, C., Zucca, F., Fossati, D., Ceriani, M., Allievi, J. (2006), Ground deformation monitoring by using the Permanent Scatterers Technique: the example of the Oltrepo Pavese (Lombardia, Italy). Engineering Geology, 88, 240–259.

  • Meisina, C., Zucca, F., Notti, D., Colombo, A., Cucchi, A., Savio, G., Giannico, C., Bianchi, M. (2008), Geological interpretation of PSInSAR Data at regional scale. Sensor, 8, 7469–7492.

  • Molin, D., Castenetto, S., Di Loreto, E., Guidoboni, E., Liberi, L., Narcisi, B., Paciello, A., Riguzzi, F., Rossi, A., Tertulliani, A., Traina, G. (1995), Sismicità. In: La Geologia di Roma, il centro storico, Memorie descrittive della Carta Geologica d’Italia, volume L, 323–408.

  • Mora, O., Mallorqui, J.J. and Broquetas, A. (2003), Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans. Geosci. Remote Sens., 41, 2243–53.

  • Notti, D., Herrera, G., Bianchini, S., Meisina, C., García-Davalillo, J.C., Zucca, F. (2014), A methodology for improving landslide PSI data analysis. International Journal of Remote Sensing, 35(6).

  • Paine, J.G., Buckley, S., Collins, E.W., Wilson, C.R., Kress, W. (2009), Assessing sinkhole potential at Wink and Daisetta, Texas using gravimetry and radar interferometry. 22nd Symposium on the application of geophysics to engineering and environmental problems, Fort Worth, Texas, 480–488.

  • Parotto, M. (2008), Evoluzione paleogeografica dell’area romana: una breve sintesi. Special volume “La geologia di Roma. Dal centro storico alla periferia”, Memorie descrittive della Carta Geologica d’Italia, 80, 25–38.

  • Patacca, E., Sartori, R. and Scandone, P. (1992), Tyrrhenian basin and Apenninic arcs: kinematic relations since late Tortonian times. Mem. Soc. Geol. Italiana, 45, 425–451.

  • Prati, C., Ferretti, A. and Perissin, D. (2010), Recent advances on surface ground deformation measurement by means of repeated space-borne SAR observations. J. Geodyn., 49, 161–170.

  • Raspini, F., Cigna, F., Moretti, S. (2012), Multi-temporal mapping of land subsidence at basin scale exploiting Persistent Scatterer Interferometry: case study of Gioia Tauro plain (Italy). Journal of Maps, 8(4), 514–524.

  • Regione Lazio (2014), Rapporto di evento del 31 gennaio - 04 febbraio 2014. Centro funzionale regionale. www.idrografico.roma.it/documenti/RapportiEvento/Anno%202014/01%20-%20Gennaio/Rapporto%20Evento%2031%20gen-04%20feb%2014.pdf

  • Reigber, A., Moreira, A. (2000), First demonstration of airborne SAR tomography using multibaseline L-band data, Geoscience and Remote Sensing, IEEE Transactions on, 38(5), 2142–2152. doi:10.1109/36.868873

  • Righini, G., Pancioli, V., Casagli, N. (2012), Updating landslide inventory maps using Persistent Scatterer Interferometry (PSI). Int. J. Remote Sens., 33, 2068–2096.

  • Riguzzi, F., Pietrantonio G., Devoti R., Atzori S., and Anzidei M. (2009), Volcanic unrest of the Colli Albani (central Italy) detected by GPS monitoring test. Earth Planet Inter, 177(1–2), 79. doi:10.1016/j.pepi.2009.07.012.

  • Rosen, P.A., Hensley, S., Joughin, I.R., Li, F.K., Madsen, S.N., Rodriguez, E., Goldstein, R.M. (2000), Synthetic aperture radar interferometry. Proc. IEEE, 88, 333–382.

  • Rott, H. (2009), Advances in interferometric synthetic aperture radar InSAR in earth system science. Progress in Physical Geography, 33, 769–791.

  • Rovida, A., Camassi, R., Gasperini, P. and Stucchi, M. (2011), CPTI11, la versione 2011 del Catalogo Parametrico dei Terremoti Italiani. Milano, Bologna, http://emidius.mi.ingv.it/CPTI

  • Salvi, S., Atzori, S., Tolomei, C., Allievi, J., Ferretti, A., Rocca, F., Prati, C., Stramondo, S., Feullet, N. (2004), Inflation rate of the Colli Albani volcanic complex retrieved by the permanent scatterers SAR interferometry technique. Geophys. Res. Lett., 31, L12606. doi:10.1029/2004GL020253.

  • Sanabria, M.P., Guardiola-Albert, C., Tomás, R., Herrera, G., Prieto, A., Sánchez, H., Tessitore, S. (2014), Subsidence activity maps derived from DInSAR data: Orihuela case study. Natural Hazards and Earth Science Systems, 14, 1341–1360.

  • Sciotti, M., Fraioli, A., and Soldà, R. (2000), Il rischio cavità sotterranee nell’area del Comune di Roma, Università degli Studi di Roma “la Sapienza”, Comune di Roma, Roma.

  • Stramondo, S., Bozzano, F., Marra, F., Wegmuller, U., Cinti, F.R., Moro, M. and Saroli, M. (2008), Subsidence induced by urbanization in the city of Roma detected by advanced InSAR. Remote Sensing of Environment 112 (2008) 3160–3172. doi:10.1016/j.rse.2008.03.008.

  • Tapete, D., Casagli, N., Fanti, R. (2012a), Radar interferometry for early stage warning of monuments at risk. In Landslide Science and Practice – Risk Assessment and Mitigation: Special Issue of The Second World Landslide Forum (Rome, Italy, 3–9 Oct. 2011) (Berlin: Springer 2012) vol 6, chapter 4 (Landslides and cultural heritage) pp. 1–6.

  • Tapete, D., Fanti, R., Cecchi, R., Petrangeli, P., Casagli, N. (2012b), Satellite radar interferometry for monitoring and early-stage warning of structural instability in archaeological sites. Journal of Geophysics and Engineering, 9(4), 10–25. doi:10.1088/1742-2132/9/4/S10.

  • Tosi, L., Teatini, P., Strozzi, T. (2013), Natural versus anthropogenic subsidence of Venice. Scientific Reports, 3:2710. doi:10.1038/srep02710

  • Ventriglia, U. (2002), Geologia del territorio del Comune di Roma (Amministrazione Provinciale di Roma, Roma 2002).

  • Wegmüller, U., Werner, C., Strozzi, T. and Wiesmann, A. (2004), Multi-temporal interferometric point target analysis. In Smits, P. and Bruzzone, L. (Eds.), Analysis of Multi-temporal remote sensing images. Series in Remote Sensing, World Scientific (ISBN 981-238-915-6), Vol. 3, 136–144.

  • Werner, C., Wegmuller, U., Strozzi, T. and Wiesmann, A. (2003), Interferometric point target analysis for deformation mapping. Proceedings of IGARSS ‘03, Vol. 7, 4362–4364.

  • Zeni, G., Bonano, M., Casu, F., Manunta, M., Manzo, M., Marsella, M., Pepe, M. and Lanari R. (2011), Long-term deformation analysis of historical buildings through the advanced SBAS-DInSAR technique: the case study of the city of Rome, Italy. J. Geophys. Eng. 8, S1–12. doi:10.1088/1742-2132/8/3/S01.

Download references

Acknowledgments

This work was performed in the framework of the PanGeo project (http://www.pangeoproject.eu), funded by the European Commission within the 7th Framework Programme under the Global Monitoring for Environment and Security (GMES)—Copernicus initiative, with Grant Agreement No. 262371. The authors acknowledge Tele-Rilevamento Europa (TRE), Milan for processing the ERS-1/2 and ENVISAT imagery with the PSInSAR technique and for their fruitful cooperation. The basemaps have been provided by Esri, DigitalGlobe, GeoEye, i-cubed, the USDA, the USGS, AEX, Getmapping, Aerogrid, IGN, swisstopo, Google Earth and the GIS user community. The authors also thank Prof. R. Calzona for the technical documentation concerning the nursery school, C. Alimonti for geotechnical data, F. Valeri and C. Del Vecchio for their technical support, and two anonymous reviewers for criticisms that strongly helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Comerci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comerci, V., Vittori, E., Cipolloni, C. et al. Geohazards Monitoring in Roma from InSAR and In Situ Data: Outcomes of the PanGeo Project. Pure Appl. Geophys. 172, 2997–3028 (2015). https://doi.org/10.1007/s00024-015-1066-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-015-1066-1

Keywords

Navigation