Skip to main content
Log in

Deep-Ocean Measurements of Tsunami Waves

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Deep-ocean tsunami measurements play a major role in understanding the physics of tsunami wave generation and propagation, and in improving the effectiveness of tsunami warning systems. This paper provides an overview of the history of tsunami recording in the open ocean from the earliest days, approximately 50 years ago, to the present day. Modern tsunami monitoring systems such as the self-contained Deep-ocean Assessment and Reporting of Tsunamis and innovative cabled sensing networks, including, but not limited to, the Japanese bottom cable projects and the NEPTUNE-Canada geophysical bottom observatory, are highlighted. The specific peculiarities of seafloor longwave observations in the deep ocean are discussed and compared with observations recorded in coastal regions. Tsunami detection in bottom pressure observations is exemplified through analysis of distant (22,000 km from the source) records of the 2004 Sumatra tsunami in the northeastern Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. NEPTUNE-Canada = Canadian North-East Pacific Underwater Networked Experiments (NEPTUNE) component of the Ocean Networks Canada (ONC).

  2. CORK = Circulation Obviation Retrofit Kit; the station has been deployed by the Pacific Geophysical Centre, Canada, within the Ocean Drilling Program.

  3. NeMO = New Millennium Observatory; the station was deployed by PMEL/NOAA (USA) in 2000 within the program of underwater volcano monitoring.

  4. An attempt to eliminate these near-tidal oscillations by increasing the number of computed tidal constituents may create a negative effect and distort the tsunami signal.

  5. It would be useful if de-tided DART records were given on the DART website (http://www.ndbc.noaa.gov/dart.shtml), similarly as is done on the Center for Operational Oceanographic Products and Services (CO-OPS) NOAA website for coastal tide gauge records.

References

  • Aucan, J., and Ardhuin, F. (2013), Infragravity waves in the deep ocean: An upward revision, Geophys. Res. Lett., 40, 3435–3439; doi:10.1002/grl.50321.

  • Barnes, C., Best, M., Johnson, F., Phibbs, P., and Pirenne, B. (2008), Transforming the ocean sciences through cabled observatories, Marine Technology Reporter, October 2008, 30–36.

  • Bernard, E.N., González, F.I., Meinig, C., and Milburn, H.B. (2001), Early detection and real-time reporting of deep-ocean tsunamis, Proc. Int. Tsunami Symp. 2001, Seattle, WA, pp. 97–108.

  • Beltrami, G.M. (2011), Automatic, real-time detection and characterization of tsunamis in deep-sea level measurements. Ocean Eng. 38(14–15), 1677–1685; doi:10.1016/j.oceaneng.2011.07.016.

  • Beltrami, G. M. and Di Risio, M. (2011), Algorithms for automatic, real-time tsunami detection in wind-wave measurements. Part I: implementation strategies and basic tests. Coastal Eng. 58(11), 10621071; doi:10.1016/j.coastaleng.2011.06.004.

  • Bressan, L., and Tinti, S. (2012), Detecting the 11 March 2011 Tohoku tsunami arrival on sea-level records in the Pacific Ocean: application and performance of the Tsunami Early Detection Algorithm (TEDA), Nat. Hazards Earth Syst. Sci. 12, 1583–1606; doi:10.5194/nhess-12-1583-2012.

  • Di Risio, M. and Beltrami, G.M. (2014), Algorithms for automatic, real-time tsunami detection in wind-wave measurements: using strategies and practical aspects, Procedia Eng. 70, 545–554.

  • Djumagaliev, V.A., and Rabinovich, A.B. (1993), Long wave investigation at the shelf and in the bays of the South Kuril Islands, J. Korean Soc. Coast. Ocean Eng., 5(4), 318–328.

  • Djumagaliev, V.A., Kulikov, E.A., and Soloviev, S.L. (1993), Analyses of ocean level oscillations in Malokurilskaya Bay caused by tsunami on February 16, 1991, Sci. Tsunami Hazards, 11(1), 47–55, 1993.

  • Dykhan, B.D., Jaque, V.M., Kulikov, E.A., et al. (1981), The first registration of tsunamis in the open ocean, Dokl. Akad. Nauk USSR, 257(5), 1088–1092. [in Russian].

  • Dykhan, B.D., Jaque, V.M., Kulikov, E.A., et al. (1983), Registration of tsunamis in the open ocean, Mar. Geodesy, 6. 303–310.

  • Eblé, M.C., and González, F.I. (1991), Deep-ocean bottom pressure measurements in the Northeast Pacific, J. Atmos. Oceanic Technol., 8, 221–233.

  • Efimov, V.V., Kulikov, E.A., Rabinovich, A.B. and Fine, I.V. (1985), Ocean Waves in Boundary Regions, Gidrometeoizdat, Leningrad, pp 280. [in Russian].

  • Eva, C. and Rabinovich, A.B. (1997), The February 23, 1887 tsunami recorded on the Ligurian coast, Western Mediterranean, Geophys. Res. Lett., 24(17), 2211–2214.

  • Filloux, J.H. (1982), Tsunami recorded on the open ocean floor, Geophys. Res. Lett. 9(1), 25–28.

  • Filloux, J.H. (1983), Pressure fluctuations on the open ocean floor off the Gulf of California: Tides, earthquakes, tsunamis, J. Phys. Oceanogr. 13(5), 783–796.

  • Filloux, J.H., Luther, D.S., and Chave, A.D. (1991), Update on seafloor pressure and electric field observations from the north-central and northeastern Pacific: Tides, infratidal fluctuations, and barotropic flow, In: Tidal Hydrodynamics (Ed. B.B. Parker), Wiley, New York, pp. 617–639.

  • Fujii, Y., and Satake, K. (2008), Tsunami sources of November 2006 and January 2007 Great Kuril earthquakes, Bull. Seismol. Soc. Am., 98, 1559–1571.

  • Gica, E., Spillane, M., Titov, V.V., Chamberlin, C., and Newman, J.C. (2008), Development of the forecast propagation database for NOAA's Short-term Inundation Forecast for Tsunamis (SIFT). NOAA Tech. Memo. OAR PMEL-139, 89 pp.

  • González, F.I., and Kulikov, E.A. (1993), Tsunami dispersion observed in the deep ocean. In: Tsunamis in the World, (Ed. S. Tinti), Kluwer Academic, Dordrecht, pp. 7–16.

  • González, F.I., Mader, C.L., Eblé, M.C., and Bernard, E.N. (1991), The 198788 Alaskan Bight tsunamis: Deep ocean data and model comparisons, Nat. Hazards, 4(1/2), 119–139.

  • González, F.I., Bernard, E.N., Meinig, C. et al. (2005), The NTHMP tsunameter network, Nat. Hazards, 35(1), 25–39.

  • Goring, D.G. (2008), Extracting long waves from tide-gauge records, J. Waterw. Port Coast. Ocean Eng. 134(5), 306–312.

  • Hirata, K., Aoyagi, M., Mikada, H. et al. (2002), Realtime geophysical measurements on the deep seafloor using submarine cable in the Southern Kurile Subduction Zone, IEEE J. Oceanic Eng., 27, 170–181.

  • Honda, K., Terada, T., Yoshida, Y., and Isitani, D. (1908), An investigation on the secondary undulations of oceanic tides, J. College Sci., Imper. Univ. Tokyo, 108 pp.

  • Jaque, V.M., and Soloviev, S.L. (1971), Remote registration of tsunami type weak waves on the shelf of the Kuril Islands, Dokl. Akad. Nauk USSR, 198(4), 816–817. [in Russian].

  • Joseph, A. (2011), Tsunamis: Detection, Monitoring and Early-Warning Technologies, Elsevier, Amsterdam, 436 pp.

  • Kaneda, Y. (2011),.Advanced ocean floor network system for mega thrust earthquakes and tsunamis, Proc. Underwater Techn. 2011 IEEE Symp. doi:10.1109/UT.2011.5774149.

  • Karl, D. M. (2004), UH and the Sea: The Emergence of Marine Expeditionary Research and Oceanography as a Field of Study at the University of Hawaii at Manoa, University of Hawaii, Honolulu, SOEST Report 04-01.

  • Kawaguchi, K., Kaneda, Y., Araki, E. et al. (2012), Reinforcement of seafloor surveillance infrastructure for earthquake and tsunami monitoring in western Japan, Proc. Oceans2012 Mts/Ieee Yeosu, May 21–24, 2012. Yeosu, Republic of Korea.

  • Kovalev, P.D., Rabinovich, A.B., and Shevchenko, G.V. (1991), Investigation of long waves in the tsunami frequency band on the southwestern shelf of Kamchatka, Nat. Hazards, 4(2/3), 141–159.

  • Kulikov, E.A. (1990), Sea level measurement and tsunami forecasting, Sov. Meteorol. Hydrol., 6, 61–68.

  • Kulikov, E.A., and González, F.I. (1996), Recovery of the shape of a tsunami signal at the source from measurements of oscillations in the ocean level by a remote hydrostatic pressure sensor, Trans. (Doklady) Russian Acad. Sci., Earth Sci. Sect. 345A, 585–591.

  • Kulikov, E.A., Pavlenko, V.G., Lappo, S.S., and Rabinovich, A.B. (1979), The Second Soviet–American Expedition to Study Tsunamis in the Open Ocean, Oceanology, 19(2), 235–236.

  • Kulikov, E.A.; Rabinovich, A.B., Spirin, A.I., Poole, S.L., and Soloviev, S.L. (1983), Measurement of tsunamis in the open ocean, Mar. Geodesy 6(3–4), 311–329.

  • Lander, J.F., Lockridge, P.A., and Kozuch, M.J. (1993), Tsunamis affecting the West Coast of the United States, 18061992. Boulder, Colorado, National Geophysical Data Center, 242 pp.

  • Lappo, S.S., and Soloviev, S.L. (1976), The First Soviet American Open-Ocean Tsunami Expedition, Oceanology, 16(4), 412–413.

  • Levin, B., and Nosov, M. (2009), Physics of Tsunamis, Springer, Dordrecht, 327 pp.

  • Matsumoto, H., and Kaneda, Y. (2009), Review of recent tsunami observation by offshore cabled observatory, J. Disaster Res. 4(6), 1–9.

  • Matsumoto, H., and Kaneda, Y. (2013), Some features of bottom pressure records at the 2011 Tohoku earthquake—Interpretation of the far-field DONET data. Proc. 11th SEGJ Intern. Symp.

  • Mofjeld, H.O. (1997), Tsunami detection algorithm, NOAA/PMEL, Seattle, WA. Only available online at http://nctr.pmel.noaa.gov/tda_documentation.html.

  • Mofjeld, H.O. (2009), Tsunami measurements, In: The Sea, Vol. 15, Tsunamis, (Eds. A. Robinson and E. Bernard), Harvard University Press, Cambridge, USA, pp. 201–235.

  • Mofjeld, H.O., Whitmore, P.M., Eble, M.C., González, F.I., and Newman, J.C. (2001), Seismic-wave contributions to bottom pressure fluctuations in the North PacificImplications for the DART tsunami array, Proc. Int. Tsunami Symp. 2001, Seattle, WA, CD, pp.97–108.

  • Mofjeld, H.O., González, F.I., and Eblé, M.C. (1996), Subtidal bottom pressure observed at Axial Seamount in the northeastern continental margin of the Pacific Ocean, J. Geophys. Res. 101(C7), 16381–16390.

  • Mungov, G., Eblé, M., and Bouchard, R. (2013), DART ® tsunameter retrospective and real-time data: A reflection on 10 years of processing in support of tsunami research and operations, Pure Appl. Geophys., 170, 1369–1384; doi:10.1007/s00024-012-0477-5.

  • Munk, W.H., and Bullard, E.C. (1963), Patching the long-wave spectrum across the tides, J. Geophys. Res. 68(12), 3627–3634.

  • Munk, W.H., Zetler, B., and Groves, G.W. (1965), Tidal cusps, Geophys. J. R. Astron. Soc. 10(2), 211–219.

  • Nowroozi, A.A. (1972), Long-term measurements of pelagic tidal height off the coast of northern California, J. Geophys. Res., 77(3), 434–443.

  • Nowroozi, A.A., Sutton, G., and Auld, B. (1966), Oceanic tides recorded on the sea floor, Ann. Geophys., 22(3), 512–517.

  • Okada, M. (1993), Tsunami observation by ocean bottom pressure gauge, In: Proc. IUGG/IOC Int. Tsunami Symp., Wakayama, Japan, pp. 385–396.

  • Okada, M. (1995), Tsunami observation by ocean bottom pressure gauge. In: Tsunami: Progress in Prediction, Disaster Prevention and Warning (Eds. Y. Tsuchiya and N. Shuto), Kluwer, Dordrecht, pp. 287–303.

  • Percival, D.B., Denbo, D.W., Eblé, M.C., Gica, E., Mofjeld, H.O., Spillane, M.C., Tang, L., and Titov, V.V. (2011), Extraction of tsunami source coefficients via inversion of DART ® buoy data, Nat. Hazards, 58(1), 567–590; doi:10.1007/s11069-010-9688-1.

  • Poole, S.L., Rabinovich, A.B., Spielvogel, L.Q., and Harvey R.R. (1980), Study of ocean tides in the region of the Kuril-Kamchatka and Japan Trenches, Oceanology 20(6), 655–659.

    Google Scholar 

  • Poplavsky, A.A., Kulikov, E.A., and Poplavskaya, L.N. (1988), Methods and Algorithms of Automatic Tsunami Warning, Moscow, Nauka, 128 pp. [in Russian].

  • Pugh, D., and Woodworth, P. (2014), Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes, Cambridge University Press, 395 pp.

  • Rabinovich, A.B. (1993), Long Ocean Gravity Waves: Trapping, Resonance, and Leaking, Gidrometeoizdat, Leningrad, 325 pp. [in Russian].

  • Rabinovich, A.B. (1997), Spectral analysis of tsunami waves: Separation of source and topography effects, J. Geophys. Res. 102(C6), 12,663–12,676.

  • Rabinovich, A.B., and Thomson, R.E. (2007), The 26 December 2004 Sumatra tsunami: Analysis of tide gauge data from the World Ocean Part 1. Indian Ocean and South Africa. Pure Appl. Geophys. 164(2/3), 261–308.

  • Rabinovich, A.B., Thomson, R.E., and Stephenson, F.E. (2006), The Sumatra Tsunami of 26 December 2004 as observed in the North Pacific and North Atlantic Oceans, Surveys Geophys. 27, 647–677.

  • Rabinovich, A.B., Stroker, K., Thomson, R., and Davis, E. (2011a), DARTs and CORK in Cascadia Basin: High-resolution observations of the 2004 Sumatra tsunami in the northeast Pacific, Geophys. Res. Lett. 38, L08607; doi:10.1029/2011GL047026.

  • Rabinovich, A.B., Woodworth, P.L., and Titov, V.V. (2011b), Deep-sea observations and modeling of the 2004 Sumatra tsunami in Drake Passage, Geophys. Res. Lett., 38. L16604; doi:10.1029/2011GL048305.

  • Rabinovich, A.B., Thomson, R.E., and Fine, I.V. (2013a), The 2010 Chilean tsunami off the west coast of Canada and the northwest coast of the United States, Pure Appl. Geophys., 170, 1529–1565; doi:10.1007/s00024-012-0541-1.

  • Rabinovich, A.B., Candella, R.N., and Thomson, R.E. (2013b), The open ocean energy decay of three recent trans-Pacific tsunamis, Geophys. Res. Lett., 40, doi:10.1002/grl.50625.

  • Saito, T., Ito, Y., Inazu, D., and Hino, R. (2011), Tsunami source of the 2011 Tohoku‐Oki earthquake, Japan: Inversion analysis based on dispersive tsunami simulations, Geophys. Res. Lett., 38; doi:10.1029/2011GL049089.

  • Satake, K. (2014), Advances in earthquake and tsunami sciences and disaster risk reduction since the 2004 Indian Ocean tsunami, Geosci. Lett. 1(15), 1–13.

  • Satake, K., Baba, T., Hirata, K. et al. (2005), Tsunami source of the 2004 off the Kii Peninsula earthquakes inferred from offshore tsunami and coastal tide gauges, Earth Planets Space, 57, 173–178.

  • Satake, K., Fujii, Y., Harada, T., and Namegaya, Y. (2013), Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as inferred from tsunami waveform data, Bull. Seismol. Soc. Am., 103, 1473–1492.

  • Saxena, N., and Zielinski, A. (1981), Deep-ocean system to measure tsunami wave height, Mar. Geodesy, 5(1), 55–62.

  • Shevchenko, G., Ivelskaya, T., Loskutov, A., and Shishkin, A. (2013), The 2009 Samoan and 2010 Chilean tsunamis recorded on the Pacific coast of Russia, Pure Appl. Geophys., 170, 1511–1527.

  • Shevchenko, G., Ivelskaya, T., and Loskutov, A. (2014), Characteristics of the 2011 Great Tohoku tsunami on the Russian Far East coast: Deep-water and coastal observations, Pure Appl. Geophys., 171(12), 3329–3350; doi:10.1007/s00024-014-0727-1.

  • Snodgrass, F.E. (1969), Study of ocean waves, 10-5 to 1 Hz, Inst. Geophys. Planet. Phys., University of California, San Diego, Surv. Paper No. 8, 34 pp.

  • Soloviev, S.L. (1968), The tsunami problem and its significance for Kamchatka and the Kuril Islands, In: The Tsunami Problem, Nauka, Moscow, pp. 7–50 [in Russian].

  • Soloviev, S.L., and Go, Ch. N. (1974), Catalogue of Tsunamis on the Western Shore of the Pacific Ocean, Nauka, Moscow, 309 pp. [in Russian; English Traslation: Canadian Transl. Fish. Aquatic Sci., No. 5078, Ottawa, 1984, 439 pp.].

  • Soloviev, S.L., Popov, V.M., Miller, G.R., et al. (1976), Preliminary Results of the First Soviet-American Tsunami Expedition. Hawaii Institute of Geophysics, NOAA-JTRE-162, HIG-76-8, 74 pp.

  • Stein, S., and Okal E.A. (2005), Speed and size of the Sumatra earthquake, Nature, 434, 581–582, doi:10.1038/434581a.

  • Taira, K., Teramoto, T., and Kitagawa, S. (1985), Measurements of ocean bottom pressure with quartz sensor, J. Oceanogr. Soc. Jpn., 41(3), 181–192.

  • Tang, L., Titov, V.V., Wei, Y., Mofjeld, H.O., Spillane, M., Arcas, D., Bernard, E.N., Chamberlin, C., Gica, E., and Newman, J. (2008), Tsunami forecast analysis for the May 2006 Tonga tsunami, J. Geophys. Res. 113(C12015); doi:10.1029/2008JC004922.

  • Thomson, R.E., and Emery, W.J. (2014), Data Analysis Methods in Physical Oceanography, Third and revised edition, Elsevier, New York, 716 pp.

  • Thomson, R.E., Fine, I.V., Rabinovich, A.B., Mihaly, S.F., Davis, E.E., Heesemann, M., and Krassovski, M.V. (2011), Observations of the 2009 Samoa tsunami by the NEPTUNE-Canada cabled observatory: Test data for an operational regional tsunami forecast model, Geophys. Res. Lett. 38, L11701; doi:10.1029/2011GL046728.

  • Titov, V.V. (2009), Tsunami forecasting, In: The Sea, Vol. 15, Tsunamis, (Eds. A. Robinson and E. Bernard), Harvard University Press, Cambridge, USA, pp. 371–400.

  • Titov, V.V., González, F.I., Bernard, E.N.Mofjeld, H.O., Newman, J.C., and Venturato, A.J. (2005a), Real-time tsunami forecasting: Challenges and solutions, Nat. Hazards, 35(1), 41–58.

  • Titov, V.V., Rabinovich, A.B., Mofjeld, H., Thomson, R.E., and González, F.I. (2005b), The global reach of the 26 December 2004 Sumatra tsunami, Science 309, 2045–2048.

  • Tolkova, E. (2010), EOF analysis of a time series with application to tsunami detection, Dyn. Atmos. Oceans 50(1), 35–54.

  • Uehira, K., Kanazawa, T., Noguchi, S.I. et al. (2012), Ocean bottom seismic and tsunami network along the Japan Trench, AGU 2012 Fall Meeting, OS41C-1736. http://www.fallmeeting.agu.org/2012/eposters/eposter/os41c-1736/.

  • UNESCO (1975), An Intercomparison of Open Sea Tidal Pressure Sensors. Techn. Papers in Marine Sciences, No. 21, 67 pp.

  • Vitousek, M.J. (1965), An evolution of the vibrotron pressure transducer as a mid-ocean tsunami gage, Hawaii Institute of Geophysics, HIG-65-13, University of Hawaii, Honolulu, 12 pp.

  • Vitousek, M.J., and Miller, G.R. (1970), An instrumentation system for measuring tsunamis in the deep ocean, Honolulu: University Press., 239–252.

  • Webb, S.C. (1998), Broadband seismology and noise under the ocean, Rev. Geophys., 36(1), 105–142.

  • Webb, S.C., Zhang, X., and Crawford, W. (1991), Infragravity waves in the deep ocean. J. Geophys. Res., 96(C2), 141–144.

  • Zielinski A., and Saxena N. (1983a), Rationale for measurement of midocean tsunami signature, Mar. Geodesy, 6(3–4), 331–337.

  • Zielinski A., and Saxena N. (1983b), Tsunami detectability using open-ocean bottom pressure fluctuations, IEEE J. Oceanic Eng, OE-8(4), 272–280.

Download references

Acknowledgments

We gratefully acknowledge the Japan Agency for Marine Earth Science and Technology (JAMSTEC) and specific agency researchers H. Matsumoto and K. Kawaguchi for the information provided on Japanese cable stations. We thank Drs. Eddie Bernard (NOAA/PMEL, Seattle, WA) and Derek Goring (Mulgor Consulting, Christchurch, NZ) for their valuable comments and suggestions. We especially thank Dr. George Mungov (National Geophysical Data Center, Boulder, CO) for his advice and assistance with DART data processing. Russian Science Foundation, Grant 14-50-00095, provided partial support for the contribution of A.B.R. This is NOAA Pacific Marine Environmental Laboratory contribution number 4297.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander B. Rabinovich.

Additional information

In memory of G. R. Miller (1930–1976), R. R. Harvey (1939–1978), and S. L. Soloviev (1930–1994).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabinovich, A.B., Eblé, M.C. Deep-Ocean Measurements of Tsunami Waves. Pure Appl. Geophys. 172, 3281–3312 (2015). https://doi.org/10.1007/s00024-015-1058-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-015-1058-1

Keywords

Navigation