Pure and Applied Geophysics

, Volume 172, Issue 3–4, pp 757–772 | Cite as

South American Tsunamis in Lyttelton Harbor, New Zealand

  • Jose C. BorreroEmail author
  • Derek G. Goring


At 2347 UTC on April 1, 2014 (12:47 pm April 2, 2014 NZDT) an earthquake with a moment magnitude of 8.2 occurred offshore of Iquique in northern Chile. The temblor generated a tsunami that was observed locally and recorded on tide gauges and deep ocean tsunameters close to the source region. While real time modeling based on inverted tsunameter data and finite fault solutions of the earthquake rupture suggested that a damaging far-field tsunami was not expected (and later confirmed), this event nevertheless reminded us of the threat posed to New Zealand by tsunami generated along the west coast of South America and from the Peru/Chile border region in particular. In this paper we quantitatively assess the tsunami hazard at Lyttelton Harbor from South American tsunamis through a review of historical accounts, numerical modeling of past events and analysis of water level records. A sensitivity study for tsunamis generated along the length of the South American Subduction Zone is used to illustrate which section of the subduction zone would generate the strongest response at Lyttelton while deterministic scenario modeling of significant historical South American tsunamis (i.e. 1868, 1877 and 1960) provide a quantitative estimate of the expected effects from possible future great earthquakes along the coast of South America.


Tsunami ports long waves earthquake natural hazards lyttelton Harbor New Zealand 



The Lyttelton Port Company (LPC), the Natural Hazards Research Platform (New Zealand) and the authors’ personal time and effort supported this study. Rob Bell of New Zealand’s National Institute of Water and Atmosphere (NIWA) provided his digitized record of the 1960 tsunami in Lyttelton Harbor for use in this study and provided comments that improved the manuscript. The historical tide levels for the 1877 and 1868 tsunamis were provided by the NIWA tide forecaster (


  1. Admire, A.R., Dengler, L., Crawford, G., Uslu, B., Borrero, J.C., Greer, S. and Wilson, R. (2014), Observed and Modeled Currents from the Tohoku-oki, Japan and other Recent Tsunamis in Northern California, Pure Appl. Geophys. doi: 10.1007/s00024-014-0797-8.
  2. Allgeyer, S., and P. Cummins (2014), Numerical tsunami simulation including elastic loading and seawater density stratification, Geophys. Res. Lett., 41, 2368–2375, doi: 10.1002/2014GL059348.
  3. Arcos, M.E.M. and LeVeque, R. (2014), Validating Velocities in the GeoClaw Tsunami Model using Observations Near Hawaii from the 2011 Tohoku Tsunami, Pure Appl. Geophys. doi: 10.1007/s00024-014-0980-y.
  4. Barrientos, S. E., and Ward, S. N. (1990), The 1960 Chile earthquake—inversion for slip distribution from surface deformation, Geophys. Jour. Int. 103(3), 589–598.Google Scholar
  5. Bell, R.G. (2003), Planning for tsunami risk in the context of other coastal hazards. In: Cochran, U. (Ed.), Programme & Abstracts: International workshop Tsunamis in the South Pacific-Research towards preparedness and mitigation. Institute of Geological & Nuclear Sciences Information Series 58, p. 23, held at Wellington Convention Centre, Wellington, 25–26 Sept, 2003. ISBN: 0478098243: 9780478098242.Google Scholar
  6. Bilek, S. L. (2010), Seismicity along the South American subduction zone: Review of large earthquakes, tsunamis, and subduction zone complexity, Tectonophysics, 495(1–2), 2–14. doi: 10.1016/j.tecto.2009.02.037.
  7. Borrero, J. C., & Greer, S. D. (2012). Comparison of the 2010 Chile and 2011 Japan Tsunamis in the Far Field. Pure Appl. Geophys. 170(6–8), 1249–1274. doi: 10.1007/s00024-012-0559-4.
  8. Borrero, J.C., Goring, D.G., Greer, D.S. and Power, W.P. (2014) Far-Field Tsunami Hazards in New Zealand Ports, Pure Appl. Geophys. doi: 10.1007/s00024-014-0987-4.
  9. Comté, D., & Pardo, M. (1991), Reappraisal of Great Historical Earthquakes in the Northern Chile and Southern Peru Seismic Gaps, Nat. Haz. 4, 23–44.Google Scholar
  10. Daubechies, I. (1988) Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41: 909:996.Google Scholar
  11. deLange, W.P. and Healey, T.R. (1986) New Zealand tsunamis 1840–1982, New Zeal. J. Geol. Geop. 29, 115–134.Google Scholar
  12. Dorbath, L., A. Cisternas, and C. Dorbath (1990), Assessment of the size of large and great historical earthquakes in Peru, Bull. Seism. Soc. Am. 80, 551–576.Google Scholar
  13. Fritz, H., Petroff, C., Catalán, P., Cienfuegos, R., Winckler, P., Kalligeris, N., Weiss, R., Barrientos, S., Meneses, G., Valderas-Bermejo, C., Ebeling, C., Papadapalous, A., Contreras, M., Almar, R., Dominguez, J., and Synolakis, C. (2011), Field survey of the 27 February 2010 Chile tsunami, Pure Appl. Geophys. (168), 1989–2010.Google Scholar
  14. Fujii, Y., & Satake, K. (2012), Slip Distribution and Seismic Moment of the 2010 and 1960 Chilean Earthquakes Inferred from Tsunami Waveforms and Coastal Geodetic Data, Pure Appl. Geophys. 170(9–10), 1493–1509. doi: 10.1007/s00024-012-0524-2.
  15. Gibson, F. (1869), On the Wave Phenomena observed in Lyttelton Harbor, August 15, 1868. Transactions and Proceedings of the New Zealand Institute, 1, 195:196.Google Scholar
  16. Gica, E., Spillane, M.C., Titov, V.V., Chamberlin, C.D., and Newman, J.C. (2008), Development of the forecast propagation database for NOAA’s Short-term Inundation Forecast for Tsunamis (SIFT), NOAA Tech. Memo. OAR PMEL-139, 89 pp.Google Scholar
  17. GNS (2014), New Zealand Institute of Geological and Nuclear Sciences,
  18. Goring, D., and Henry, R. (1998), Short period (1–4 h) sea level fluctuations on the Canterbury coast, N. Z. J. Mar. Fresh. 32, 119–134.Google Scholar
  19. Goff, J., Nichol, S., Chagué-Goff, C., Horrocks, M., McFadgen, B., & Cisternas, M. (2010), Predecessor to New Zealand’s largest historic trans-South Pacific tsunami of 1868AD, Mar. Geol. 275(1-4), 155–165. doi: 10.1016/j.margeo.2010.05.006.
  20. Goring (2009), Meteo-tsunami resulting from the propagation of synoptic-scale weather systems, Phys. Chem. Earth 34, 1009–1015.Google Scholar
  21. Goring, D. (2002), Response of New Zealand waters to the Peru tsunami of 23 June 2001, New Zeal. J. Mar. Fresh. 36:225–232.Google Scholar
  22. Goring, D. and Henry, R., (1998), Short period (1-4 h), sea level fluctuations on the Canterbury coast, New Zealand, New Zeal. J. Mar. Fresh. Res., 32, 119–134.xGoring (2009).Google Scholar
  23. Heath, R.A. (1976), The response of several New Zealand harbours to the 1960 Chilean tsunami, in: Tsunami research symposium 1974. Bull. R. Soc. N. Z. 15, 71–82.Google Scholar
  24. Hubbard, B.B. (1996), The world according to wavelets: the story of a mathematical technique in the making. A. K. Peters Ltd, 264 pp.Google Scholar
  25. Ji, Chen, D.J. Wald, and D.V. Helmberger (2002), Source description of the 1999 Hector Mine, California earthquake, Part I: Wavelet domain inversion theory and resolution analysis, B. Seismol. Soc. Am. Vol. 92, No. 4, p. 1192–1207. 31.Google Scholar
  26. Kanamori, H. (1977), The Energy Release in Great Earthquakes, J. Geophys. Res., 82(20), 2981–2987.Google Scholar
  27. Kulikov, E. A., Rabinovich, A. B., & Thomson, R. E. (2005), Estimation of Tsunami Risk for the Coasts of Peru and Northern Chile. Nat. Haz., 35(2), 185–209. doi: 10.1007/s11069-004-4809-3.
  28. Lomnitz, C. (2004), Major earthquakes of Chile: a historical survey, 1535-1960, Seismol. Res. Lett. 75(3), 368–378.Google Scholar
  29. Lynett, P.J., Borrero, J.C., Son, S., Wilson, R.W. and Miller, K. (2014), Assessment of the tsunami-induced current hazard, Geophys. Res. Lett. doi:  10.1002/2013GL058680.
  30. Okal, E. A., Borrero, J. C., & Synolakis, C. E. (2006), Evaluation of Tsunami Risk from Regional Earthquakes at Pisco, Peru. Bull. Seismol. Soc. Am., 96(5), 1634–1648. doi: 10.1785/0120050158.
  31. Okal, E.A., L. Dengler, S. Araya, J.C. Borrero, B. Gomer, S. Koshimura, G. Laos, D. Olcese, M. Ortiz, M. Swensson, V.V. Titov, and F. Vegas (2002), A field survey of the Camaná, Peru tsunami of June 23, 2001, Seismol. Res. Lett., 73, 904–917, 2002.Google Scholar
  32. Percival, D.B., Denbo, D.W., Eble, M.C., Gica, E., Mofjeld, H.O., Spillane, M.C., Tang, L., and Titov, V.V. (2011), Extraction of tsunami source coefficients via inversion of DART ® buoy data, Nat. Hazards 58(1), 567–590, doi: 10.1007/s11069-010-9688-1.
  33. Plafker, G., and Savage, J. (1970), Mechanism of the Chilean earthquake of May 21 and 22, 1960, Geol. Soc. Am. Bull., 81, 1001–1030.Google Scholar
  34. Power, W. L., Downes, G., and Stirling, M. (2007), Estimation of Tsunami Hazard in New Zealand due to South American Earthquakes, Pure Appl. Geophys. 164(2-3), 547–564. doi: 10.1007/s00024-006-0166-3.
  35. Rabinovich, A.B. (2009), Seiches and harbor oscillations, in Handbook of Coastal and Ocean Engineering (edited by Y.C. Kim), Chapter 9, World Scientific Publ., Singapore, 2009, 193–236.).Google Scholar
  36. Soloviev, S. L. and Ch. N. Go. (1975), A Catalogue of tsunamis on the eastern shore of the Pacific Ocean (1513-1968), Nauka Publishing House, Moscow, USSR, 204 pp. Canadian Translation: Fish and Aquatic Science 5078, 1984.Google Scholar
  37. Titov, V. V., & Gonzalez, F. I. (1997), Implementation and testing of the Method of Splitting Tsunami (MOST) model (No. ERL PMEL-112) (p. 14), Retrieved from
  38. Titov, V., Moore, C, Greenslade, D., Pattiaratchi, C., Badal, R., Synolakis, C., and Kanoglu, U. (2011), A new tool for inundation modeling: COMmunity Modeling Interface for Tsunamis (ComMIT). Pure Appl. Geophys., 168, 2121–2131.Google Scholar
  39. Titov, V.V. and Synolakis, C.E.. (1998), Numerical modeling of tidal wave run-up, J. Wtrwy, Port, Ocean and Coastal Eng. 124(4), 157–171.Google Scholar
  40. Watada, S. (2013), Tsunami speed variations in density-stratified compressible global oceans, Geophys. Res. Lett. 40, 4001–4006, doi: 10.1002/grl.50785.
  41. Zamudio, Y., Berrocal, J., & Fernandes, C. (2005), Seismic hazard assessment in the Peru-Chile border region. In 6th International Symposium on Andean Geodynamics (pp. 813–816).Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.eCoast Ltd.RaglanNew Zealand
  2. 2.Tsunami Research CenterUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Mulgor ConsultingChristchurchNew Zealand

Personalised recommendations