Advertisement

Pure and Applied Geophysics

, Volume 172, Issue 3–4, pp 885–899 | Cite as

Runup of Nonlinear Long Waves in Trapezoidal Bays: 1-D Analytical Theory and 2-D Numerical Computations

  • M. W. Harris
  • D. J. Nicolsky
  • E. N. Pelinovsky
  • A. V. Rybkin
Article

Abstract

Long nonlinear wave runup on the coasts of trapezoidal bays is studied analytically in the framework of one-dimensional (1-D) nonlinear shallow-water theory with cross-section averaging, and is also studied numerically within a two-dimensional (2-D) nonlinear shallow water theory. In the 1-D theory, it is assumed that the trapezoidal cross-section channel is inclined linearly to the horizon, and that the wave flow is uniform in the cross-section. As a result, 1-D nonlinear shallow-water equations are reduced to a linear, semi-axis variable-coefficient 1-D wave equation by using the generalized Carrier–Greenspan transformation [Carrier and Greenspan (J Fluid Mech 1:97–109, 1958)] recently developed for arbitrary cross-section channels [Rybkin et al. (Ocean Model 43–44:36–51, 2014)], and all characteristics of the wave field can be expressed by implicit formulas. For detailed computations of the long wave runup process, a robust and effective finite difference scheme is applied. The numerical method is verified on a known analytical solution for wave runup on the coasts of an inclined parabolic bay. The predictions of the 1-D model are compared with results of direct numerical simulations of inundations caused by tsunamis in narrow bays with real bathymetries.

Keywords

Wave run-up shallow water wave equations Carrier–Greenspan transformation numerical simulation 

Notes

Acknowledgments

This work was done as part of the REU program run by the fourth author in the summer of 2012, and was supported by NSF grant DMS 1009673. The government support is highly appreciated. We are grateful to the following other participants who also contributed to this project: Jeremiah Harrington, Lander Ver Hoef, and Viacheslav Garayshin. DJ acknowledges support from the Cooperative Institute for Alaska Research with funds from the National Oceanic and Atmospheric Administration under cooperative agreement NA08OAR4320751 with the University of Alaska. EP acknowledges support from State Contract 2014/133, RFBR grant (14-05-00092), and VolkswagenStiftung.

References

  1. Benz, H., Dart, R., Nor, A. V., Hayes, G., Tarr, A., Furlong, K., Rhea, S., 2011. Seismicity of the earth 1900 2010 aleutian arc and vicinity. Open-file report 2010 083-b, U.S. Geological Survey, scale 1:5,000,000.Google Scholar
  2. Caldwell, R., Eakins, B., Lim, E., 2009. Digital elevation models of Prince William Sound, Alaska-procedures, data sources and analysis. Tech. rep., National Geophysical Data Center, NOAA, Boulder, Colorado,http://www.ngdc.noaa.gov/dem/report/download/1305 .
  3. Carrier, G., Greenspan, H., 1958. Water waves of finite amplitude on a sloping beach. Journal of Fluid Mechanics 01, 97–109.Google Scholar
  4. Courant, R., Friedrichs, K., Lewy, H., 1928. Über die partiellen differenzengleichungen der mathematischen physic. Mathematische Annalen 100, 32–74.Google Scholar
  5. Didenkulova, I., 2013. Tsunami runup in narrow bays: the case of Samoa 2009 tsunami. Natural Hazards 65(3), 1629–1636.Google Scholar
  6. Didenkulova, I., Pelinovsky, E., 2011a. Non-linear wave evolution and run-up in an inclined channel of a parabolic cross-section. Physics of Fluids 23, 086602.Google Scholar
  7. Didenkulova, I., Pelinovsky, E., 2011b. Runup of tsunami waves in U-shaped bays. Pure and Applied Geophysics 168, 1239–1249.Google Scholar
  8. Dunbar, P., Weaver, C., 2008. US states and territories. national tsunami hazard assessment: Historical record and sources for waves. Tech. rep., NOAA and USGS, 59 pp.Google Scholar
  9. Ewing, L., 2011. The Tohoku tsunami of March 11, 2011: A preliminary report on effects to the California coast and planning implications. Tech. rep., California Coastal Commission, 40 pp.Google Scholar
  10. Fletcher, C., 1991. Computational Techniques for Fluid Dynamics 1. Springer-Verlag, 401 pp.Google Scholar
  11. Fritz, H., Borrero, J., Synolakis, C., Okal, E., Weiss, R., Lynett, P., Titov, V., Foteinis, S., Jaffe, B., Liu, P.-F., Chan., I.-C., 2011a. Insights on the 2009 south pacific tsunami in samoa and tonga from field surveys and numerical simulations. Earth Science Review 107, 66–75, doi: 10.1016/j.earscirev.2011.03.004.
  12. Fritz, H., Petroff, C., Catalan, P., Cienfuegos, R., Winckler, P., Kalligeris, N., Weiss, R., Barrientos, S., Meneses, G., Valderas-Bermejo, C., Ebeling, C., Papadopoulos, A., Contreras, M., Almar, R., D. J., Synolakis, C., 2011b. Field survey of the 27 february 2010 chile tsunami. Pure Appl. Geophys 168(11), 1989–2010, doi: 10.1007/s00024-011-0283-5.
  13. Garayshin, V., 2013. Tsunami runup in u and v shaped bays. Master’s thesis, University of Alaska Fairbanks.Google Scholar
  14. Gottlieb, S., Shu, C.-W., Tadmore, E., 2001. Strong stability-preserving high-order time discretization methods. SIAM Review 43(1), 89–112.Google Scholar
  15. Gusiakov, V., Marchuk, A., Osipova, A., 1997. Perspectives on Tsunami Hazard Reduction. Kluwer Academic Publishers, Ch. Expert tsunami database for the Pacific: motivation, design and proof-of-concept demonstration, pp. 21–43, available at http://tsun.sscc.ru/tsulab/On_line_Cat.htm
  16. Kanoglu, U., 2004. Nonlinear evolution and runup and rundown of long waves over a sloping beach. Journal of Fluid Mechanics 513, 363–372.Google Scholar
  17. Kanoglu, U., Synolakis, C. E., 1998. Long wave runup on piecewise linear topographies. Journal of Fluid Mechanics 374, 1–28.Google Scholar
  18. Kanoglu, U., Synolakis, C. E., 2006. The initial value problem solution of nonlinear shallow-water wave equations. Physical Review Letters 97, 148501.Google Scholar
  19. Kiffer, D., October 30 2012. We all survived the great tsunami alert of 2012! SitNews: Column, http://www.sitnews.us/DaveKiffer/103012_kiffer.html
  20. Kim, D., Kim, K., Pelinovsky, E., Didenkulova, I., Choi, B., 2013. Three-dimensional tsuna-mi runup simulation at the Koborinai port, Sanriku coast, Japan. Journal of Coastal Research 65, 266–271.Google Scholar
  21. Liu, H., Shimozono, T., Takagawa, T., Okayasu, A., Fritz, H., Sato, S., Tajima, Y., 2013. The 11 March 2011 tohoku tsunami survey in rikuzentakata and comparison with historical events. Pure Appl. Geophys 170(6–8), 1033–1046, doi: 10.1007/s00024-012-0496-2.
  22. MATLAB, 2011. version 7.13.0.564 (R2011b). The MathWorks Inc., Natick, Massachusetts.Google Scholar
  23. NGDC, 2013. National Geophysical Data Center / (NGDC/WDS) global historical tsunami database. Tech. rep., NGDC, Boulder, CO, USA, available at http://www.ngdc.noaa.gov/hazard/tsu_db.shtml
  24. Pelinovsky, E., Troshina, E., 1994. Propagation of long waves in straits. Phys. Oceanography 5, 43–48.Google Scholar
  25. Ruppert, N., Lees, J., Kozyreva, N., 2007. Volcanism and Subduction: The Kamchatka Region. vol. 172 of Geophysical Monograph Series. American Geophysical Union, Washington, D.C., Ch. Seismicity, Earthquakes and Structure Along the Alaska-Aleutian and Kamchatka-Kurile Subduction Zones: A Review, pp. 129–144.Google Scholar
  26. Rybkin, A., Pelinovsky, E., Didenkulova, I., 2014. Non-linear wave run-up in bays of arbitrary cross-section:generalization of the Carrier-Greenspan approach. Journal of Fluid Mechanics 748, 416–432.Google Scholar
  27. Shi, F., Kirby, J., Harris, J., Geiman, J., Grilli, S., 2012.A high-order adaptive time-stepping tvd solver for boussinesq modeling of breaking waves and coastal inundation. Ocean Modeling 43–44, 36–51.Google Scholar
  28. Shimozono, T., Cui, H., Pietrzak, J., Fritz, H., Okayasu, A., Hooper, A., 2014.Short wave amplification and extreme runup by the 2011 tohoku tsunami. Pure Appl. Geophys. doi:  10.1007/s00024-014-0803-1 (online first, in press).
  29. Shimozono, T., Sato, S., Okayasu, A., Tajima, Y., Fritz, H., Liu, H., Takagawa, T., 2012.Propagation and inundation characteristics of the 2011 Tohoku Tsunami on the Central Sanriku Coast. Coastal Eng. J 54(1):1250004, doi: 10.1142/S0578563412500040.
  30. Stoker, J., 1957. Water waves: The Mathematical Theory with Applications. Interscience Publishers.Google Scholar
  31. Synolakis, C., 1987. The runup of solitary waves. Journal of Fluid Mechanics 185, 523–545.Google Scholar
  32. Synolakis, C., Bernard, E., 2006. Tsunami science before and beyond Boxing Day 2004. Philosophical Transactions of the Royal Society A 364, 2231–2265.Google Scholar
  33. Synolakis, C., Bernard, E., Titov, V., Kanoglu, U., Gonzalez, F., 2008. Validation and verification of tsunami numerical models. Pure Applied Geophysics 165, 2197–2228.Google Scholar
  34. Tang, L., Titov, V., Chamberlin, C., 2009. Development, testing, and applications of site-specific tsunami inundation models for real-time forecasting. J. Geophys. Res. 114, C12025, doi: 10.1029/2009JC005476.
  35. Tehranirad, B., Kirby, J., Ma, G., Shi, F., 2012a. Tsunami benchmark results for nonhydrostatic wave model NHWAVE (Version 1.1). Research report no. cacr-12-03, Center for Applied Coastal Research, University of Delaware, Newark.Google Scholar
  36. Tehranirad, B., Shi, F., Kirby, J., Harris, J., Grilli, S., 2012b. Tsunami benchmark results for fully nonlinear boussinesq wave model funwavetvd, version 1.0. In: Proceedings and Results of the 2011 NTHMP Model Benchmarking Workshop. US Department of Commerce/NOAA/NTHMP, NOAA Special Report, Boulder, CO, pp. fix it, (available at http://nthmp.tsunami.gov)
  37. Toro, E., 2009. Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer, New York.Google Scholar
  38. Wilson, R., Admire, A., Borrero, J., Dengler, L., Legg, M., Lynett, P., McCrink, T., Miller, K., Ritchie, A., Sterling, K., Whitmore, P., 2013. Observations and impacts from the 2010 Chilean and 2011 Japanese tsunamis in California (USA). Pure and Applied Geophysics 170, 1127–1147.Google Scholar
  39. Wilson, R., Miller, K., 2014. Tsunami emergency response playbooks. Special report, California Geological Survey.Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • M. W. Harris
    • 1
  • D. J. Nicolsky
    • 2
  • E. N. Pelinovsky
    • 3
    • 4
  • A. V. Rybkin
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of Alaska FairbanksFairbanksUSA
  2. 2.Geophysical InstituteUniversity of Alaska FairbanksFairbanksUSA
  3. 3.Institute of Applied PhysicsNizhny NovgorodRussia
  4. 4.Nizhny Novgorod State Technical UniversityNizhny NovgorodRussia

Personalised recommendations