Pure and Applied Geophysics

, Volume 172, Issue 11, pp 3123–3137

Characterization of Cavities Using the GPR, LIDAR and GNSS Techniques

  • Miguel Angel Conejo-Martín
  • Tomás Ramón Herrero-Tejedor
  • Javier Lapazaran
  • Enrique Perez-Martin
  • Jaime Otero
  • Juan F. Prieto
  • Jesús Velasco


The study of the many types of natural and manmade cavities in different parts of the world is important to the fields of geology, geophysics, engineering, architectures, agriculture, heritages and landscape. Ground-penetrating radar (GPR) is a noninvasive geodetection and geolocation technique suitable for accurately determining buried structures. This technique requires knowing the propagation velocity of electromagnetic waves (EM velocity) in the medium. We propose a method for calibrating the EM velocity using the integration of laser imaging detection and ranging (LIDAR) and GPR techniques using the Global Navigation Satellite System (GNSS) as support for geolocation. Once the EM velocity is known and the GPR profiles have been properly processed and migrated, they will also show the hidden cavities and the old hidden structures from the cellar. In this article, we present a complete study of the joint use of the GPR, LIDAR and GNSS techniques in the characterization of cavities. We apply this methodology to study underground cavities in a group of wine cellars located in Atauta (Soria, Spain). The results serve to identify construction elements that form the cavity and group of cavities or cellars. The described methodology could be applied to other shallow underground structures with surface connection, where LIDAR and GPR profiles could be joined, as, for example, in archaeological cavities, sewerage systems, drainpipes, etc.


Cavities underground cellars GNSS LIDAR GPR geodetection 


  1. Altamimi, Z., Collilieux, X., and Métivier, L. (2011), ITRF2008: an improved solution of the international terrestrial reference frame, Journal of Geodesy, 85(8), 457–473.Google Scholar
  2. Balanis, C. A., Advanced engineering electromagnetics. Chapter 10: Spherical Transmission Lines and Cavities (John Wiley & Sons., New York 1989).Google Scholar
  3. Benson, R. C., Glaccum, R. A., Noel, M. R., Geophysical Techniques for Sensing Buried Wastes and Waste Migration (Environment Monitoring Systems Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 1983).Google Scholar
  4. Bilich, A. and Mader, G., GNSS Absolute Antenna Calibration at the National Geodetic Survey, In 23rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION, Portland, OR, September 21–24, 2010) pp. 1369–1377.Google Scholar
  5. Blanco, M., Cálculo de coordenadas de las estaciones de la red GNSS de Castilla y León [Computating coordinates of the GNSS stations network of Castilla y León] (ITACYL, Junta de Castilla-Leon, Valladolid, Spain 2010) (in Spanish).Google Scholar
  6. Bornaz, L., and Rinaudo, F., Terrestrial Laser Scanning Data Processing, In 20th ISPRS Congress, (ISPRS, Istanbul, Turkey, July 12–23, 2004) pp. 514–520.Google Scholar
  7. Burns, B., Clark, W.W. and McMichael, I., Modeling GPR Data from LIDAR Soil Surface Profile, In SPIE Defense, Security, and Sensing (International Society for Optics and Photonics, 2012) pp. 835712–835712-9.Google Scholar
  8. Cañas, I., Cid-Falceto, J., and Mazarrón, F. R. (2012), Bodegas subterráneas excavadas en tierra: Características de los suelos en la Ribera del Duero (España). [Underground cellars excavated on earth: Soil characteristics in the Ribera del Duero] Informes de la Construcción, 64(527), 287–296 (in Spanish).Google Scholar
  9. Conyers, L., and Goodman, D., Ground-penetrating radar: An introduction for archaeologists, (US/Mountain Book. AltaMira Press, Walnut Creek, CA 1997).Google Scholar
  10. Daniels, D. J., and Institution of Electrical, E., Ground penetrating radar (Institution of Electrical Engineers, London 2004).Google Scholar
  11. Davis, J. L., and Annan, A. P. (1989), Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy, Geophysical Prospecting, 37(5), 531–551.Google Scholar
  12. Deparis, J., Fricout, B., Jongmans, D., Villemin, T., Effendiantz, L., and Mathy, A. (2008), Combined use of geophysical methods and remote techniques for characterizing the fracture network of a potentially unstable cliff site (the ‘Roche du Midi’, Vercors massif, France), Journal of Geophysics and Engineering, 5(2), 147–157.Google Scholar
  13. Dobrin, M. B., and Savit, C. H., Introduction to Geophysical Prospecting (McGraw-Hill, Singapore, 1988).Google Scholar
  14. Dow, J., Neilan, R. E., and Rizos, C. (2009). The International GNSS Service in a changing landscape of Global Navigation Satellite Systems, Journal of Geodesy, 83(3–4), 191–198.Google Scholar
  15. Ferrández Pastor, F. J., Deriva frecuencial de la transmisión electromagnética por efecto del medio, [Drift frequency of the electromagnetic transmission due to medium effect] (PhD Thesis, Universidad de Alicante, 2007), (in Spanish).Google Scholar
  16. Francese, R. and Morelli, G., New perspectives in buried utility detection and mapping with a Multi-Scan GPR System. In 19 th EEGS Symposium on the Application of Geophysics to Engineering and Environmental problems (EEGS, Palermo, Italy, April 2006).Google Scholar
  17. Francese, R. G., Finzi, E., and Morelli, G. (2009), 3-D high-resolution multi-channel radar investigation of a Roman village in Northern Italy, Journal of Applied Geophysics, 67(1), 44–51.Google Scholar
  18. Fuentes-Pardo, J. M., and Guerrero, I. C. (2006), Subterranean wine cellars of Central-Spain (Ribera de Duero): An underground built heritage to preserve, Tunnelling and Underground Space Technology, 21(5), 475–484.Google Scholar
  19. Hartmeyer, I., Keuschnig, M., and Schrott. L. (2012), A scale-oriented approach for the long-term monitoring of ground thermal conditions in permafrost-affected rock faces, Kitzsteinhorn, Hohe Tauern Range, Austria. Austrian Journal of Earth Sciences., 105(2), 128–139.Google Scholar
  20. Hofmann-Wellenhof, B., Lichtenegger, H., and Wasle, E., GNSS - Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more (Springer, Vienna, Austria 2008).Google Scholar
  21. Hopfield, H. S. (1969), Two-quartic tropospheric refractivity profile for correcting satellite data, Journal of Geophysical Research 74(18), 4487–4499.Google Scholar
  22. ign, El Nuevo modelo de geoide para España EGM08-REDNAP [The new geoid model EGM08-REDNAP to Spain] (Instituto Geográfico Nacional, Madrid, Spain 2010) (in Spanish).Google Scholar
  23. Jol, H. M., Ground penetrating radar: theory and applications (Elsevier Science, Amsterdam, Netherlands 2009).Google Scholar
  24. Keuschnig, M., Otto, J. and Schrott, L. (2010), Application of GPR on rough terrain surfaces for monitoring issues using a simple ropeway system. Geophysical Research Abstracts, 12, EGU2010-3573.Google Scholar
  25. Keumsuk, L., Tomasso, M., Ambrose, W. A., et al. (2007), Integration of GPR with stratigraphic and LIDAR data to investigate behind-the-outcrop 3D geometry of a tidal channel reservoir analog, upper Ferron Sandstone, Utah. Leading Edge, 26, 8, 994–998.Google Scholar
  26. Lapazaran, J. J., Técnicas de procesado de datos de georradar y su aplicación al estudio del régimen termodinámico de los glaciares fríos y politérmicos [GPR data processing techniques and its application to the study of the thermodynamic regime of cold and polythermal glaciers] (PhD Thesis, Universidad Politécnica de Madrid, Madrid 2004) (in Spanish).Google Scholar
  27. Leopold, M., Ganaway, E., Volkel, J., Haas, F., Becht, M., Heckmann, T. et al. (2011), Geophysical Prospection of a Bronze Foundry on the Southern Slope of the Acropolis at Athens, Greece. Archaeological Prospection, 18(1), 27–41.Google Scholar
  28. Lorenzo, E., Prospección geofísica de alta resolución mediante Geo-Radar. Aplicación a obras civiles [High resolution geophysical prospection by Geo-Radar. Civil works applications] (CEDEX, Madrid, Spain 1996) (in Spanish).Google Scholar
  29. López-Geta, J.A., Los acuíferos de la provincia de Jaén. In I Jornadas sobre el Presente y Futuro de las Aguas Subterráneas en la Provincia de Jaén [The aquifers in the province of Jaén] (Hidrogeología y aguas subterráneas, 7. IGME, Madrid, Spain, 2002, ISBN. 84-7840-472-4, pp. 15-27) (in Spanish).Google Scholar
  30. López-Piñeiro, A., García-Navarro, A., and Collins, M. E. (1998), Estimación de la profundidad de penetración del Radar (GPR) a partir de medidas reflectométricas TDR “in situ” [Estimating Radar (GPR) penetration depth from TDR reflectometric measurements “in situ”], Edafología, 5, 11 (in Spanish).Google Scholar
  31. Nozal, F. and Herrero, A. (2005), El Mioceno del borde meridional del Corredor Aranda de Duero-Burgo de Osma (SE Cuenca del Duero) [The Miocene of the southern edge of Aranda de Duero Runner-Burgo de Osma (SE Duero Basin)], Rev. Soc. Geol. de España, 18 (1–2), 21–37 (in Spanish).Google Scholar
  32. Nuzzo, L., Leucci, G., and Negri, S. (2009), GPR, ERT and Magnetic Investigations Inside the Martyrium of St. Philip, Hierapolis, Turkey. Archaeological Prospection, 16(3), 177–192.Google Scholar
  33. Ocana, S. M., and Guerrero, I. C. (2006), Comparison of analytical and on site temperature results on Spanish traditional wine cellars. Applied Thermal Engineering, 26(7), 700–708.Google Scholar
  34. Pérez, M. V., Radar de subsuelo. Evaluación para aplicaciones en arqueología y en patrimonio histórico-artístico [Underground radar. Evaluation for applications in archeology and historical-artistic heritage] (PhD Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain 2001) (in Spanish).Google Scholar
  35. Pettinelli, E., Barone, P. M., Mattei, E., and Lauro, S. E. (2011), Radio wave techniques for non-destructive archaeological investigations. Contemporary Physics, 52(2), 121–130.Google Scholar
  36. Pesci, A., Fabris, M., Conforti, D., Loddo, F., Baldi, P., and Anzidei, M. (2007), Integration of ground-based laser scanner and aerial digital photogrammetry for topographic modelling of Vesuvio volcano. Journal of Volcanology and Geothermal Research, 162(3–4) 123–138.Google Scholar
  37. Reppert, P. M., Morgan, F. D., and Toksöz M. N. (2000), Dielectric constant determination using ground-penetrating radar reflection coefficients, Journal of Applied Geophysics, 43, 189–197.Google Scholar
  38. Rizos, C. (2002), Network RTK Research and Implementation – A Geodetic Perspective, Journal of Global Positioning System, 1, 144–150.Google Scholar
  39. Rodríguez-Gonzálvez, P., Muñoz-Nieto, A., Gozalo-Sanz, I., Mancera-Taboada, J., González-Aguilera, D., Carrasco-Morillo, P. (2014), Geomatics and Geophysics Synergies to Evaluate Underground Wine Cellars, International Journal of Architectural Heritage: Conservation, Analysis, and Restoration, 8(4), 537–555.Google Scholar
  40. Sandmeier, K.J., Reflexw 2D processing software (version 7.0) (Sandmeier Scientific Software, Karlsruhe, Germany 2012). Retrieved from http://www.sandmeier-geo.de/reflexw.html.
  41. Scheib, A., Arkley, S., Auton, C., Boon, D., Everest, J., Kuras, O., et al. (2008), Multidisciplinary characterisation and modelling of a small upland catchment in Scotland, Quaestiones Geographicae, 27A(2), 45–62.Google Scholar
  42. Schrott, L., and Sass, O. (2008), Application of field geophysics in geomorphogy: Advances and limitations exemplified by case studies, Geomorphology, 93(1–2), 55–73.Google Scholar
  43. Silvia, M. O., and Ignacio, C. G. (2005), Comparison of hygro-thermal conditions in underground wine cellars from a Spanish area, Building and Environment, 40(10), 1384–1394.Google Scholar
  44. Sithole, G., Vosselman, G. (2004), Experimental comparison of filter algorithms for bare-earth extraction from airborne laser scanning point clouds, ISPRS Journal of Photogrammetry and Remote Sensing, 59(1–2), 85–101.Google Scholar
  45. Sotoodeh, S. (2006), Outlier detection in laser scanner point clouds, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(5), 297–302.Google Scholar
  46. Vasudeo, A. D., Katpatal, Y. B., and Ingle, R. N. (2009), Uses of dielectric constant reflection coefficients for determination of ground-penetrating radar, World Applied Sciences Journal, 6(10), 1321–1325.Google Scholar
  47. Yilmaz, Ö., Seismic data analysis: processing, inversion, and interpretation of seismic data (Society of Exploration Geophysicists, Tulsa OK 2001).Google Scholar
  48. Young, R. and Lord, N. (2002), A hybrid laser-tracking/GPS location method allowing GPR acquisition in rugged terrain, The Leading Edge, 21(5), 486–490.Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Miguel Angel Conejo-Martín
    • 1
  • Tomás Ramón Herrero-Tejedor
    • 1
  • Javier Lapazaran
    • 2
  • Enrique Perez-Martin
    • 1
  • Jaime Otero
    • 2
  • Juan F. Prieto
    • 3
  • Jesús Velasco
    • 3
  1. 1.Departamento de Ingeniería Cartográfica, Geodesia y Fotogrametría, Expresión Gráfica, EUIT AgrícolaUniversidad Politécnica de MadridMadridSpain
  2. 2.Departamento de Matemática Aplicada, ETSI de TelecomunicaciónUniversidad Politécnica de MadridMadridSpain
  3. 3.Departamento de Ingeniería Topográfica y Cartografía, ETSI Topografía, Geodesia y CartografíaUniversidad Politécnica de MadridMadridSpain

Personalised recommendations