Pure and Applied Geophysics

, Volume 172, Issue 2, pp 295–308 | Cite as

A New Seismic Data Set on the Depth of the Moho in the Alps

  • Irene Bianchi
  • Michael Behm
  • Eva Maria Rumpfhuber
  • Götz Bokelmann
Article

Abstract

We present the results from receiver function analysis applied to a comprehensive data set in the Eastern Alps. Teleseismic events were recorded at 70 stations with an average deployment of 1 year. The investigated area includes the eastern part of the Eastern Alps and their transition to the Bohemian Massif, the Pannonian domain, and the Southern Alps. The crustal structure at each station is examined with the Zhu-Kanamori (ZK) method, which yields well-resolved interface depths in laterally homogeneous media with limited layering. The application of the ZK technique is challenged because of the complex tectonic setting; therefore, we include additional constraints from recent active-source seismic studies. In particular, the well-known crustal P-wave velocity and, where available, the Vp/Vs ratio are kept fixed, thus reducing the ambiguity in determining Moho depths. Individual depth values vary strongly between adjacent stations, showing that the employment of the ZK technique in tectonically complex settings is limited. We therefore avoid interpreting the results in detail, but rather compare them to existing crustal models of the Eastern Alps. We regard this receiver function study in the easternmost part of the Alps as a documentation of a data set that has potential to be exploited in the future.

Keywords

Eastern Alps Moho receiver functions crustal structure ZK technique 

Supplementary material

24_2014_953_MOESM1_ESM.pdf (53 kb)
Supplementary material 1 (PDF 52 kb)
24_2014_953_MOESM2_ESM.pdf (1.8 mb)
Supplementary material 2 (PDF 1859 kb)
24_2014_953_MOESM3_ESM.pdf (105 kb)
Supplementary material 3 (PDF 105 kb)

References

  1. Alpine Explosion Seismology Group, Reporter H. Miller (1976), A lithospheric seismic profile along the axis of the Alps, 1975: I: First results, Pure Appl. Geophys. 114, 11091130.Google Scholar
  2. Ammon, C. (1991), The isolation of receiver effects from teleseismic p wave- forms, Bull. Seismol. Soc. Am. 81, 2504–2510.Google Scholar
  3. Babuska, V., Plomerova, J., Sileny, J. (1987), Structural model of the sub- crustal lithosphere in central europe. In: Fuchs, K., Froidevaux, C. (Eds.), Composition, Structure and Dynamics of the Lithosphere-Asthenosphere System. Vol. 16. Am. Geophys. Union, Geodyn. Ser., pp. 239–251.Google Scholar
  4. Behm, M. (2009), 3-d modeling of the crustal s-wave velocity structure from active source data: application to the Eastern Alps and the Bohemian Massif, Geophysical Journal International 179(1), 265–278.Google Scholar
  5. Behm, M., Brückl, E., Chwatal, W., Thybo, H. (2007), Application of stacking and inversion techniques to three-dimensional wide- angle reflection and refraction seismic data of the Eastern Alps. Geophys. J. Int. 170(1), 275– 298.Google Scholar
  6. Bianchi, I., Park, J., Piana Agostinetti, N., Levin, V. (2010), Mapping seismic anisotropy using harmonic decomposition of receiver functions: an application to northern Apennines, Italy, J. Geophys. Res. 115, b12317.Google Scholar
  7. Bianchi, I., Piana Agostinetti, N., Chiarabba, C., De Gori, P. (2008), Deep structure of the Colli Albani volcanic district (central Italy) from receiver functions analysis, J. Geophys. Res. 113, B09313, doi:10.1029/2007JB005548.
  8. Bischoff, M., Endrun, B., Meier, T. (2006), Lower crustal anisotropy in central Europe deduced from dispersion analysis of Love and Rayleigh waves, Geophys. Res. Abstr. 8 (10010).Google Scholar
  9. Bleibinhaus, F., Gebrande, H. (2006), Crustal structure of the Eastern Alps along the TRANSALP profile from wide-angle seismic tomography, Tectonophysics 414, 51–69.Google Scholar
  10. Brückl, E. (2011), Lithospheric structure and tectonics of the Eastern Alps evidence from new seismic data. In: Closson, D. (Ed.), Tectonics. INTECH, pp. 39–64.Google Scholar
  11. Brückl, E., Behm, M., Decker, K., Grad, M., Guterch, A., Keller, G. R., Thybo, H. (2010), Crustal structure and active tectonics in the Eastern Alps, Tectonics 29(2).Google Scholar
  12. Brückl, E., Bleibinhaus, F., Gosar, A., Grad, M., Guterch, A., Hrubcova, P., Keller, G. R., Majdaski, M., Umanovac, F., Tiira, T., Yliniemi, J., Hegeds, E., Thybo, H. (2007), Crustal structure due to collisional and escape tectonics in the eastern alps region based on profiles alp01 and alp02 from the alp 2002 seismic experiment, Journal of Geophysical Research: Solid Earth 112(B6).Google Scholar
  13. Brückl, E., Bodoky, T., Hegedüs, E., Hrubcova, P., Gosar, A., Grad, M., Guterch, A., Hajnal, Z., Keller, G., Spicak, A., Sumanovac, F., Thybo, H., Weber, F. (2003), Special contribution: Alp 2002 seismic experiment, Studia Geophysica et Geodaetica 47(3), 671–679.Google Scholar
  14. Carbonell, R., Levander, A., Kind, R. (2013), The Mohorovičić discontinuity beneath the continental crust: An overview of seismic constraints, Tectonophysics, 609, 353–376, 0040-1951, http://dx.doi.org/10.1016/j.tecto.2013.08.037.
  15. Castellarin, A., Nicolich, R., Fantoni, R., Cantelli, L., Sella, M., Selli, L. (2006), Structure of the lithosphere beneath the eastern alps (southern sector of the TRANSALP transect), Tectonophysics 414(14), 259 – 282.Google Scholar
  16. Champion, M. E. S., White, N. J., Jones, S. M., Priestley, K. F. (2006), Crustal velocity structure of the British Isles; a comparison of receiver functions and wide-angle seismic data, Geophys. J. Int. 166, 795813.Google Scholar
  17. Dando, B. D. E., Stuart, G. W., Houseman, G. A., Hegeds, E., Brckl, E., Radovanovi, S. (2011), Teleseismic tomography of the mantle in the Carpathian-Pannonian region of central Europe, Geophysical Journal International 186(1), 11–31.Google Scholar
  18. Dewey, J. K., Pitman, W. C., Ryan, W. B. F., Bonnin, J. (1973), Plate tectonics and the evolution of the alpine system, Geological Society of America Bulletin 84, 31373180.Google Scholar
  19. Di Stefano, R., Bianchi I., Ciaccio, M. G., Carrara, G., Kissling, E. (2011), Three- dimensional Moho topography in Italy: New constraints from receiver functions and controlled source seismology, Geochem. Geophy. Geosy. 12.Google Scholar
  20. Dugda, M. T., Nyblade, A. A., Julia, J., Langston, C. A., Ammon, C. J., Simiyu, S. (2005), Crustal structure in Ethiopia and Kenya from receiver function analysis: Implications for rift development in eastern Africa, J. Geophys. Res. 110 (B01303), doi:10.1029/2004JB003065.
  21. Eaton, D., Dineva, S., Mereu, R. (2006), Crustal thickness and V p /V s variations in the Grenville orogen (Ontario, Canada) from analysis of teleseismic receiver functions, Tectonophysics 420(1–2).Google Scholar
  22. Eckhardt, C., Rabbel, W. (2011) P-receiver functions of anisotropic continental crust: a hierarchic catalogue of crustal models and azimuthal waveform patterns, Geophysical Journal International 187(1), 439479.Google Scholar
  23. Endrun, B., Lebedev, S., Meier, T., Tirel, C., Friederich, W. (2011), Complex layered deformation within the aegean crust and mantle revealed by seismic anisotropy, Nature Geoscience 4.Google Scholar
  24. França, G. S., Assumpçao, M. (2004), Crustal structure of the Ribeira fold belt, SE-Brazil, derived from receiver functions, Journal of South American Earth Sciences 16(8), 743–758.Google Scholar
  25. Frederiksen, A. W., Bostock, M. G. (2000), Modeling teleseismic waves in dipping anisotropic structures, Geophys. J. Int. 141, 401–412.Google Scholar
  26. Gallacher, R. J., Bastow, I. D. (2012), The development of magmatism along the Cameroon volcanic line: Evidence from teleseismic receiver functions, Tectonics 31(3).Google Scholar
  27. Gans, C. R. (2011), Investigations of the crust and upper mantle of modern and ancient subduction zones, using Pn tomography and seismic receiver functions, PhD thesis, University of Arizona.Google Scholar
  28. Geissler, W. H., Kind, R., Yuan, X. (2008), Upper mantle and lithospheric heterogeneities in central and Eastern Europe as observed by teleseismic receiver functions, Geophysical Journal International 174(1), 351–376.Google Scholar
  29. Grad, M., Brückl, E., Majdaski, M., Behm, M., Guterch, A., CELEBRATION 2000 and ALP 2002 Working Groups (2009a), Crustal structure of the Eastern Alps and their foreland: Seismic model beneath the Cel10/Alp04 profile and tectonic implications, Geophysical Journal International 177(1), 279–295.Google Scholar
  30. Grad, M., Tiira, T., ESC Working Groups (2009b). The Moho depth map of the European Plate, Geophysical Journal International 176, 279292.Google Scholar
  31. Guterch, A., Grad, M., Keller, G., Posgay, K., Vozr, J., pik, A., Brückl, E., Hajnal, Z., Thybo, H., Selvi, O. (2003), Special contribution: Celebration 2000 seismic experiment, Studia Geophysica et Geodaetica 47(3), 659–669.Google Scholar
  32. Kissling, E., Schmid, S., Lippitsch, R., Ansorge, J., Fugenschuh, B. (2006), Lithosphere structure and tectonic evolution of the Alpine arc: new evidence from high-resolution teleseismic tomography. In: Gee, D., Stephen- son, R. A. (Eds.), European Lithosphere Dynamics, Geol. Soc. London Mem., pp. 129–145.Google Scholar
  33. Kummerow, J., Kind, R., Oncken, O., Giese, P., Ryberg, T., Wylegalla, K., TRANSALP Working Group, F. S. (2004), A natural and controlled source seismic profile through the Eastern Alps: TRANSALP, Earth and Planetary Science Letters 225, 115–129.Google Scholar
  34. Langston, C. A. (1979), Structure under Mount Rainier, Washington, inferred from teleseismic body waves, J. Geophys. Res. 84(B9), 4749–4762.Google Scholar
  35. Laubscher, H. (1990), The problem of the Moho in the Alps, Tectonophysics 182(1-2), 9–20.Google Scholar
  36. Lippitsch, R., Kissling, E., Ansorge, J. (2003), Upper mantle structure beneath the alpine orogen from high-resolution teleseismic tomography, J. Geophys. Res 108 (2376).Google Scholar
  37. Liu, H., Niu, F. (2012), Estimating crustal seismic anisotropy with a joint analysis of radial and transverse receiver function data, Geophysical Journal International 188, 144164.Google Scholar
  38. Lloyd, S., van der Lee, S., França, G. S., Assumpçao, M., Feng, M. (2010), Moho map of South America from receiver functions and surface waves, Journal of Geophysical Research 115, b11315.Google Scholar
  39. Lombardi, D., Braunmiller, J., Kissling, E., Giardini, D. (2008), Moho depth and Poisson’s ratio in the Western-Central Alps from receiver functions, Geophys. J. Int. 173.Google Scholar
  40. Lombardi, D., Braunmiller, J., Kissling, E., Giardini, D. (2009), Alpine mantle transition zone imaged by receiver functions, Earth and Planetary Science Letters 278.Google Scholar
  41. Lueschen, E., Lammerer, B., Gebrande, H., Millahn, K., Nicolich, R., TRANSALP Working Group (2004), Orogenic structure of the Eastern Alps, Europe, from TRANSALP deep seismic reflection profiling, Tectonophysics 388, 85102.Google Scholar
  42. Meissner, R., Mooney, W. (1998), Weakness of the lower continental crust: a condition for delamination, uplift, and escape, Tectonophysics 296, 47–60.Google Scholar
  43. Meurers, B., Reuss, D. (2009), A new Bouguer gravity map of Austria, Austrian Journal of Earth Sciences 102, 62–70.Google Scholar
  44. Mitterbauer, U., Behm, M., Brückl, E., Lippitsch, R., Guterch, A., Keller, G. R., Koslovskaya, E., Rumpfhuber, E. M., Sumanovac, F. (2011) Shape and origin of the East-Alpine slab constrained by the alpass teleseismic model, Tectonophysics 510, 195–206.Google Scholar
  45. Molinari, I., Raileanu, V., Morelli, A. (2012) A crustal model for the Eastern Alps region and a new Moho map in southeastern Europe, Pure and Applied Geophysics 169(9), 1575–1588.Google Scholar
  46. Nagaya, M., Oda, H., Akazawa, H., Ishise, M. (2008) Receiver Functions of Seismic Waves in Layered Anisotropic Media: Application to the Estimate of Seismic Anisotropy, Bulletin of the Seismological Society of America 98(6), 29903006.Google Scholar
  47. Nicolas, A., Hirn, A., Nicolich, R., Polino, R. (1990), Lithospheric wedging in the western Alps inferred from the ECORS-CROP traverse, Geology 18(7), 587–590.Google Scholar
  48. Oeberseder, T., Behm, M., Kovcs, I., Falus, G. (2011), A seismic discontinuity in the upper mantle between the Eastern Alps and the western Carpathians: Constraints from wide-angle reflections and geological implications, Tectonophysics 504(1–4), 122–134.Google Scholar
  49. Olsson, S., Roberts, R., Bodvarssoni, R. (2008), Moho depth variation in the Baltic shield from analysis of converted waves, Gff 130.Google Scholar
  50. Panza, G. F., Mueller, S., Calcagnile, G. (1980), The gross features of the lithosphere-asthenosphere system in Europe from seismic surface waves and body waves, Pure Appl. Geophys. 118, 1209–1213.Google Scholar
  51. Park, J. J., Levin, V. (2000), Receiver functions from multiple-taper spectral correlation estimates, Bull. Seismo. Soc Amer. 90, 1507–1520.Google Scholar
  52. Piana Agostinetti, N., Amato, A. (2009), Moho depth and Vp/Vs ratio in peninsular Italy from teleseismic receiver functions, J. Geophys. Res. 114, B06303, doi:10.1029/2008JB005899.
  53. Piana Agostinetti, N., Bianchi, I., Amato, A., Chiarabba, C. (2011). Fluid migration in continental subduction: The Northern Apennines case study. Earth and Planetary Science Letters 302(3–4) PP. 267–278 . doi:10.1016/j.epsl.2010.10.039.
  54. Porter, R., Zandt, G., McQuarrie, N. (2011), Pervasive lower-crustal anisotropy in Southern California: Evidence for underplated schists and active tectonics, Lithosphere 3, 201–220.Google Scholar
  55. Ratschbacher, L., Frisch, W., Linzer, H.-G., Merle, O. (1991), Lateral extrusion in the Eastern Alps, part 2: Structural analysis, Tectonics 10(2), 257–271.Google Scholar
  56. Roux, E., Moorkamp, M., Jones, A. G., Bischoff, M., Endrun, B., Lebedev, S., Meier, T. (2011), Joint inversion of longperiod magnetotelluric dataand surfacewave dispersion curves for anisotropic structure: Application to data from central Germany, Geophysical Research Letters 38 (L05304).Google Scholar
  57. Royden, L., Horvth, F., Rumpler, J. (1983), Evolution of the pannonian basin system: 1. Tectonics, Tectonics 2(1), 63–90.Google Scholar
  58. Spada, M., Bianchi, I., Kissling, E., Piana Agostinetti, N., Wiemer, S. (2013), Combining controlled-source seismology and receiver function information to derive 3d Moho topography for Italy, Geophysical Journal International, doi:10.1093/gji/ggt148.
  59. Tierno Ros, C. (2009), 3d density modelling of the crustal structure in the Vienna Basin region, Diploma thesis, Vienna University of Technology.Google Scholar
  60. Ustaszewski, K., S. M. Schmid, B. Fügenschuh, M. Tischler, E. Kissling, and W. Spakman (2008), A map-view restoration of the Alpine-Carpathian-Dinaridic system for the Early Miocene, Swiss Journal of Geosciences, 101(Supplementary Issue 1), 273–294.Google Scholar
  61. Wessel, P., Smith, W. H. F. (1998,) New, improved version of the Generic Mapping Tools released, EOS Trans. AGU 79, 579.Google Scholar
  62. Wittlinger, G., Farra, V., Hetényi, G., Vergne, J. and Nábělek, J. (2009), Seismic velocities in Southern Tibet lower crust: a receiver function approach for eclogite detection. Geophysical Journal International, 177: 1037–1049. doi:10.1111/j.1365-246X.2008.04084.x.
  63. Yan, Q. Z., Mechie, J. (1989), A fine structural section through the crust and lower lithosphere along the axial region of the alps, Geophysical Journal International 98(3), 465–488.Google Scholar
  64. Zhu, L., Kanamori, H. (2000), Moho depth variation in southern California from teleseismic receiver function, J. Geophys. Res. 105, 2969–2980.Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Irene Bianchi
    • 1
  • Michael Behm
    • 1
    • 2
  • Eva Maria Rumpfhuber
    • 3
  • Götz Bokelmann
    • 1
  1. 1.Department of Meteorology and GeophysicsUniversity of ViennaViennaAustria
  2. 2.Department of GeophysicsColorado School of MinesGoldenUSA
  3. 3.ExxonMobil Exploration CompanyHoustonUSA

Personalised recommendations