Pure and Applied Geophysics

, Volume 172, Issue 7, pp 1975–1984 | Cite as

Fractal Dimension of the Hydrographic Pattern of Three Large Rivers in the Mediterranean Morphoclimatic System: Geomorphologic Interpretation of Russian (USA), Ebro (Spain) and Volturno (Italy) Fluvial Geometry

  • Carlo Donadio
  • Fernando Magdaleno
  • Adriano Mazzarella
  • G. Mathias Kondolf
Article

Abstract

By applying fractal geometry analysis to the drainage network of three large watercourses in America and Europe, we have calculated for the first time their fractal dimension. The aim is to interpret the geomorphologic characteristics to better understand the morphoevolutionary processes of these fluvial morphotypes; to identify and discriminate geomorphic phenomena responsible for any difference or convergence of a fractal dimension; to classify hydrographic patterns, and finally to compare the fractal degree with some geomorphic-quantitative indexes. The analyzed catchment of Russian (California, USA), Ebro (Spain), and Volturno (Italy) rivers are situated in Mediterranean-climate regions sensu Köppen, but with different geologic context and tectonic styles. Results show fractal dimensions ranging from 1.08 to 1.50. According to the geological setting and geomorphic indexes of these basins, the lower fractal degree indicates a prevailing tectonics, active or not, while the higher degree indicates the stronger erosion processes on inherited landscapes.

Keywords

Fractal dimension fluvial geomorphology Mediterranean climate USA Europe 

References

  1. Andrews, W.M. Jr. (2006), Geologic control on Plio-Pleistocene drainage evolution of the Kentucky River in central Kentucky, Kentucky Geological Survey, University of Kentucky (USA), Thesis 4, Series XII, pp. 216.Google Scholar
  2. Bartolini, C. (2012), Is the morphogenetic role of tectonics overemphasized at times?, Boll. Geof. Teor. Appl. 53(4), 459–470.Google Scholar
  3. Batalla, R.J., Gómez, C.M., and Kondolf, G.M. (2004), Reservoir-induced hydrological changes in the Ebro River basin, J. Hydrol. 290, 117–136.Google Scholar
  4. Burbank, D.W., Anderson, R.S., Tectonic Geomorphology, 2nd ed. (Wiley-Blackwell., Oxford 2011).Google Scholar
  5. D’Alessandro, L., De Pippo, T., Donadio, C., Mazzarella, A., and Miccadei, E. (2006), Fractal dimension in Italy: a geomorphological key to interpretation, Zeit. Geom. N. F. 50(4), 479–499.Google Scholar
  6. De Martonne, E. (1941), Nouvelle carte mondiale de l’indice d’ariditè, La meteorologie 1, 3–20.Google Scholar
  7. De Pippo, T., Donadio, C., Mazzarella, A., Paolillo, G., and Pennetta, M. (2003), Fractal geometry applied to coastal and submarine features, Zeit. Geom. N. F. 48(2), 185–199.Google Scholar
  8. De Pippo, T., Donadio, C., Pennetta, M., Petrosino, C., Terlizzi, F., and Valente, A. (2008), Coastal hazard assessment and mapping in Northern Campania, Italy, Geomorphology 97, 451–466.Google Scholar
  9. Deitch, M.J., and Kondolf, G.M. (2012), Consequences of variations in magnitude and duration of an instream environmental flow threshold across a longitudinal gradient, J. Hydrol. 420–421, 17–24.Google Scholar
  10. Del Monte, M., Fredi, P., Lupia Palmieri, E., and Salvini, F. (1999), Fractal analysis to define drainage network geometry, Boll. Soc. Geol. It. 118, 167–177.Google Scholar
  11. Del Monte, M., Fredi, P., Lupia Palmieri, E., and Sbarra, P. (2007), Some relations between fractal dimension of drainage network and geomorphology of drainage basins, Transactions Jap. Geom. Union 28(1), 1–21.Google Scholar
  12. Fournier, F., Climat et Erosion (PUF, París 1960).Google Scholar
  13. Gao, J., and Xia, Z. (1996), Fractals in physical geography, Progress Phys. Geogr. 20(2), 178–191.Google Scholar
  14. Gardiner, V., and Park, C. (1978), Drainage basin morphometry: review and assessment, Progress Phys. Geogr. 2, 1–35.Google Scholar
  15. Garnett, P.W. (1986), River meanders and channel size, J. Hydrol. 88, 147–164.Google Scholar
  16. Grassberger, P., and Procaccia, I. (1983), Characterization of strange attractors, Phys. Rev. Lett. 50, 346–349.Google Scholar
  17. Horton, R.E. (1945), Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology, Geol. Soc. Am. Bull. 56, 275–370.Google Scholar
  18. Howard, A.D. (1967), Drainage analysis in geologic interpretation: a summation, Amer. Ass. of Petroleum Geologist Bull. 51, 2246–2259.Google Scholar
  19. James, J.W. (1966), A modified Koeppen classification of California’s climates according to recent data, California Geographer 7, 1–12 + map.Google Scholar
  20. Jones, S.J. (2004), Tectonic controls on drainage evolution and development of terminal alluvial fans, southern Pyrenees, Spain, Terra Nova 16, 121–127.Google Scholar
  21. Klinkenberg, B. (1992), Fractal and morphometric measures: is there a relationship?, In Fractals in Geomorphology (eds. Snow R.S. and Mayer L.), Geomorphology 5, 5–20.Google Scholar
  22. Klinkenberg, B. (1994), A review of methods used to determine the fractal dimension of linear features, Math., Geol. 26, 23–46.Google Scholar
  23. Klinkenberg, B., and Clarke K.C., Exploring the fractal mountains, In Automated Pattern Analysis in Petroleum Exploration (eds. Palaz I. and Sengupta S.) (Springer-Verlag, New York 1992), pp. 201–212.Google Scholar
  24. Klinkenberg, B., and Goodchild, M. (1994), The fractal properties of topography: a comparison of methods, Earth Proc. Landf. 17, 217–234.Google Scholar
  25. Kondolf, G.M., and Batalla, R.J., Hydrological effects of dams and water diversions on rivers of Mediterranean-climate regions: examples from California, In Catchment Dynamics and River Processes: Mediterranean and Other Climate Regions (eds. Garcia C. and Batalla R.J.) (Elsevier, Amsterdam 2005) pp. 197–211.Google Scholar
  26. Kondolf, G.M., Montgomery, D.R., Piégay, H., and Schmitt, L. (2003), Geomorphic classification of rivers and streams, In Tools in Fluvial Geomorphology (eds. Kondolf G.M. and Piégay H.) (John Wiley & Sons, Chichester 2003) pp. 171–204.Google Scholar
  27. Köppen, W., and Geiger, R., Handbuch der Klimatologie. Vol. 1, Part C (Gerbrüder Borntraeger, Berlin 1936).Google Scholar
  28. La Barbera, P., and Rosso, R. (1989), On the fractal dimension of stream networks, Water Resources Res. 25, 735–741.Google Scholar
  29. Luongo, G., Mazzarella, A., and Di Donna, G. (2000), Multifractal characterization of Vesuvio lava-flow margins and its implications, J. Volc. Geotherm. Res. 101, 307–311.Google Scholar
  30. Magdaleno, F., Donadio, C., and Kondolf, G.M. (2014), 30 year response of a Mediterranean river to damming in California, USA, Hydrological Sciences Journal (submitted).Google Scholar
  31. Magdaleno, F., Fernández, J.A., and Merino, S. (2012), The Ebro River in the 20th century or the ecomorphological transformation of a large and dynamic Mediterranean channel. Earth Surf. Proc. Landf. 37(5), 486–498.Google Scholar
  32. Mandelbrot, B.B. (1967), How long is the coast of Britain? Statistical similarity and fractal dimension, Science 155, 636–638.Google Scholar
  33. Mandelbrot, B.B. (1975), Stochastic model ìs of the Earth’s relief, the shape and the fractal dimension of the coastal lines, and the number area rule for the islands, Proc. Nat. Acad. Sc. USA 72, 3825–3828.Google Scholar
  34. Mandelbrot, B.B., Gli oggetti frattali: forma, caso e dimensione (G. Einaudi ed., Torino 1987).Google Scholar
  35. Mandelbrot, B.B., The Fractal Geometry of Nature (Freeman and Co., New York 1983).Google Scholar
  36. Mazzarella, A. (1999), Multifractal dynamic rainfall processes in Italy, Theor. Appl. Climatol. 63, 73–78.Google Scholar
  37. Mazzarella, A., and Tranfaglia, G. (2000), The fractal characterisation of geophysical measuring networks and its implications for an optimal location of additive stations: an application to a rain-gauge network, Theor. Appl. Climatol. 65, 157–163.Google Scholar
  38. Nagatani, T. (1993), Dynamic scaling of river-size distribution in the Scheidegger’s river network model, Fractals 1, 247–252.Google Scholar
  39. Peckham, S.D. (1995), New results for self-similar trees with applications to river networks, Water Resources Res. 31(4), 1023–1029.Google Scholar
  40. Pennetta, M., Corbelli, V., Esposito, P., Gattullo, V., and Nappi, R. (2011), Environmental impact of coastal dunes in the area located to the left of the Garigliano river mouth (Campany, Italy). J. Coastal Res. SI 61, 421–427.Google Scholar
  41. Perron, J.T., Kirchner, J.W., and Dietrich, W.E. (2009), Formation of evenly spaced ridges and valley, Nature Letters 460, 502–505.Google Scholar
  42. Pinna, M., Climatologia (Utet, Torino 1977).Google Scholar
  43. Rodríguez-Iturbe, I., and Rinaldo, A., Fractal River Basins. Chance and Self-Organization (Cambridge University Press, UK 2001).Google Scholar
  44. Saa, A., Gascó, G., Grau, J. B., Antón, J.M., and Tarquis, A.M. (2007), Comparison of gliding box and box-counting methods in river network analysis, Nonlinear Processes in Geophysics 14(5), 603–613.Google Scholar
  45. Shen, X.H., Zou, L.J., Zhang, G.F., Su, N., Wu, W.Y., and Yang, S.F. (2011), Fractal characteristics of the main channel of Yellow River and its relation to regional tectonic evolution. Geomorphology 127, 64–70.Google Scholar
  46. Snow, R.S. (1989), Fractal sinuosity of stream channels, Pure Appl. Geophys. 131, 99–109.Google Scholar
  47. Strahler, A.N. (1957), Quantitative analysis of watershed geomorphology, Trans. Am. Geophys. Un. 38, 913–920.Google Scholar
  48. Tokunaga, E. (1978), Consideration on the composition of drainage networks and their evolution, Geograph. Rep. Tokyo Metro. Univ. 13, 1–27.Google Scholar
  49. Turcotte, D.L., Fractals and Chaos in Geology and Geophysics (Cambridge University Press, UK 1997).Google Scholar
  50. Xiao, Y., and Klinkenberg, B. (1993), Topographic characterization for geographic modeling, Proc. GIS’93, Vancouver, 883–898.Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Carlo Donadio
    • 1
  • Fernando Magdaleno
    • 2
    • 3
  • Adriano Mazzarella
    • 1
  • G. Mathias Kondolf
    • 4
  1. 1.DiSTAR, Department of Earth Sciences, Environment and ResourcesUniversity of Naples Federico IINaplesItaly
  2. 2.CEDEX, Centre for Studies and Experimentation on Public WorksMinistry of Public Works - Ministry of Agriculture, Food and EnvironmentMadridSpain
  3. 3.Technical University of MadridMadridSpain
  4. 4.LAEP, Department of Landscape Architecture and Environmental PlanningUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations