Skip to main content

Tsunami Hazards along the Eastern Australian Coast from Potential Earthquakes: Results from Numerical Simulations

Abstract

Australia is surrounded by the Pacific Ocean and the Indian Ocean and, thus, may suffer from tsunamis due to its proximity to the subduction earthquakes around the boundary of Australian Plate. Potential tsunami risks along the eastern coast, where more and more people currently live, are numerically investigated through a scenario-based method to provide an estimation of the tsunami hazard in this region. We have chosen and calculated the tsunami waves generated at the New Hebrides Trench and the Puysegur Trench, and we further investigated the relevant tsunami hazards along the eastern coast and their sensitivities to various sea floor frictions and earthquake parameters (i.e. the strike, the dip and the slip angles and the earthquake magnitude/rupture length). The results indicate that the Puysegur trench possesses a seismic threat causing wave amplitudes over 1.5 m along the coast of Tasmania, Victoria, and New South Wales, and even reaching over 2.6 m at the regions close to Sydney, Maria Island, and Gabo Island for a certain worse case, while the cities along the coast of Queensland are potentially less vulnerable than those on the southeastern Australian coast.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Anderson, H., Webb T., Jackson J. (1993). Focal mechanism of large earthquakes in the South Island of New Zealand, implications for the accomodation of Pacific–Australia plate motion. Geophysical Journal International 115:1032– 1054.

  2. Barnes, P. M., Bostock, H. C., Neil, H. L., Strachan, L.J. and Gosling, M. (2013). A 2300‐Year Paleoearthquake Record of the Southern Alpine Fault and Fiordland Subduction Zone, New Zealand, Based on Stacked Turbidites. Bulletin of the Seismological Society of America 103(4): 2424-2446.

  3. Burbidge, D., Cummins P.R., Mleczko, R., Thio, H.K. (2008). A probabilistic tsunami hazard assessment for Western Australia. Pure and Applied Geophysics, 165:2059–2088

  4. Bryant, E.A. (1991). Natural Hazards. Cambridge University Press, Melbourne.

  5. Bryant, E.A., Young, R.W., Price, D.M. (1992). Evidence of tsunami sedimentation on the Southeastern coast of Australia. The Journal of Geology 100:753-765.

  6. Calmant, S., Pelletier, B., Lebellegard, P., Bevis, M., Talor, F.W. and Phillips, D.A. (2003). New insights on the tectonics along the New Hebrides subduction zone based on GPS results. J. Geophys. Res., 108(18), doi:10.1029/2001J1200644.

  7. Chinn, D.S. and Isacks, B.L. (1983). Accurate source depths and focal mechanisms of shallow earthquakes in western South America and in the New Hebrides island arc. Tectonics, 2(6): 529-563.

  8. Coblentz, D.D., Zhou, S., Hillis, R.R., Richardson, R.M. and Sandiford, M. (1998). Topography, boundary forces, and the Indo‐Australian intraplate stress field. Journal of Geophysical Research: Solid Earth, 103(B1):919-931.

  9. Collot, J.Y., Lamarche, G., Wood, R., Delteil, J., Sosson, M., Lebrun, J.-F., Coffin, M.F. (1995). Morphostructure of an incipient subduction zone along a transform plate boundary: Puysegur ridge and trench. Geology, 23:519– 522.

  10. Comer, R.P. (1984). Tsunami generation: a comparison of traditional and normal mode approaches. Geophysical Journal International, 77:29–41.

  11. Delteil, J., Collot, J.-Y., Wood, R., Herzer, R., Calmant, S., Christoffel, D., Coffin, M., Ferrière, J., Lamarche, G., Lebrun, J.-F. (1996). From strike-slip faulting to oblique subduction: A survey of the Alpine Fault-Puysegur Trench transition, New Zealand, results of cruise Geodynz-sud leg 2. Marine Geophysical Researches 18: 383-399

  12. DeMets, C., Gordon, R.G., Argus, D.F., Stein, S. (1994). Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophysical Research Letters, 21 (20): 2191– 2194.

  13. Frohlich, C., Coffin, M.F., Massell, C., Mann, P., Schuur, C.L., Davis, S.D., Jones, T., Karner, G. (1997). Constraints on Macquarie Ridge tectonics provided by Harvard focal mechanisms and teleseismic earthquake location. Journal of Geophysical Research, 102 (B3): 5029– 5041.

  14. Furumura, T., Imai, K. and Maeda, T. (2011). A revised tsunami source model for the 1707 Hoei earthquake and simulation of tsunami inundation of Ryujin Lake, Kyushu, Japan, J. Geophys. Res., 116: B02308 doi:10.1029/2010JB007918

  15. Goff, J.R., Chagué-Goff, C., Terry, J.P. (2012). The value of a Pacific-wide tsunami database to risk reduction: putting theory into practice. Geological Society, London, Special Publications, 361: 209-220. doi: 10.1144/SP361.17

  16. Goto, C., Ogawa, Y., Shuto, N., Imamura, N. (1997). Numerical method of tsunami simulation with the leap-frog scheme (IUGG/IOC Time Project. IOC Manual, UNESCO 35

  17. Greenslade, D.J.M., Allen, S.C.R. and Simanjuntak, M.A. (2010). An evaluation of tsunami forecasts from the T2 scenario database. Pure Appl. Geophys., 168(6-7): 1137-1151, doi:10.1007/s00024-010-0229-3

  18. Hayes, G. P. and Furlong, K. P. (2010). Quantifying potential tsunami hazard in the Puysegur subduction zone, south of New Zealand. Geophys. J. Int. 183:1512-1524.

  19. House, M.A., Gurnis, M., Kamp, P.J.J., Sutherland, R. (2002). Uplift in the Fiordland Region, New Zealand: implications for incipient subduction. Science 297:2038– 2041.

  20. Huang, Z., Wu, T.R., Tan, S.K., Megawati, K., Shaw, F., Liu, X. and Pan, T.C. (2009). Tsunami hazard from the subduction Megathrust of the South China Sea: Part II. Hydrodynamic modeling and possible impact on Singapore. Journal of Asian Earth Sciences, 36(1): 93-97.

  21. Imamura, F., Yalciner, C. and Ozyurt, G. (2006). TSUNAMI MODELLING MANUAL, http://www.tsunami.civil.tohoku.ac.jp/hokusai3/J/projects/manual-ver-3.1.pdf

  22. Jones, A.T., Mader, C.L. (1996). Wave erosion on the southeastern coast of Australia: tsunami propagation modeling. Australian Journal of Earth Sciences, 43:479-483

  23. Kaiser, G., Scheele, L., Kortenhaus, A., Lovholt, F., Romer, H. and Leschka, S. (2011). The influence of land cover roughness on the results of high resolution tsunami inundation modeling. Nat. Hazards Earth Syst. Sci. 11: 2521-2540

  24. Karig, D.E. and Mammerickx, J. (1972). Tectonic framework of the New Hebrides island arc. Marine Geology 12:187-205.

  25. Lamarche, G., Lebrun, J.-F. (2000). Transition from strike-slip faulting to oblique subduction: active tectonics at the Puysegur Margin, South New Zealand. Tectonophysics 316:67– 89.

  26. Lebrun, J.F., Lamarche, G., Collot, J.Y., Deteil, J. (2000). Abrupt strike-slip fault to subduction transition; the Alpine Fault-Puysegur Trench connection, New Zealand. Tectonics 19:688– 706.

  27. Liu, Y., Shi, Y., Sevre, E.O.D, Xing, H.L. and Yuen, D.A. (2009a). Probabilistic Forecast of Tsunami Hazards along Chinese Coast, In Xing H (eds) Chapter VIII in Advance in Geocomputing, Springer-Verlag GmbH, pp279-317, DOI:10.1007/978-3-540-85879-9_8.

  28. Liu, Y., Shi, Y., Yuen, D.A., Sevre, E.O.D, Yuan, X. and Xing, H.L. (2009b). Comparison of linear and nonlinear shallow wave water equations applied to tsunami waves over the China Sea. Acta Geotechnica. 4:129-137. doi:10.1007/s11440-008-0073-0

  29. Liu, Y., Santos, A., Wang, S.M., Shi, Y., Liu, H., Yuen, D.A. (2007). Tsunami hazards from potential earthquakes along South China Coast. Phys Earth Planet Inter 163:233–245

  30. Lockridge, P.A., Smith, R.H. (1984). Tsunamis in the Pacific Basin, 1900–1983, Natl. Geophys. Data Cent., Natl. Oceanic and Atmos. Admin., Boulder, Colo..

  31. Mitchell, A.H.G. and Warden, A. J. (1971). Geological evolution of the New Hebrides island arc. Journal of the Geological Society, 127(5): 501-529.

  32. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. America 75:1135–1154.

  33. Pelinovsky, E., Talipova, T., Kurkin, A.C.K. (2001). Nonlinear Mechanism of Tsunami Wave Generation by Atmospheric Disturbances. Natural Hazard and Earth Sci. 1:243–250.

  34. Power, W., Wallace, L., Wang, X., Reyners, M. (2012). Tsunami Hazard Posed to New Zealand by the Kermadec and Southern New Hebrides Subduction Margins: An Assessment Based on Plate Boundary Kinematics, Interseismic Coupling, and Historical Seismicity. Pure Appl. Geophys. 169:1–36. DOI 10.1007/s00024-011-0299-x

  35. Roecker, S.W., Chatelain, J.L., Isacks, B.L., Prevot, R. (1988). Anomalously deep earthquakes beneath the New Hebrides trench. Bulletin of the Seismological Society of America 78:1984-2007

  36. Ruff, L.J., Given, J.W., Sanders, C.O., Sperber, C.M. (1989). Large earthquakes in the Macquarie Ridge Complex: transitional tectonics and subduction initiation. Pure and Applied Geophysics, 128:72– 129.

  37. Stirling, M., McVerry, G., Gerstenberger, M., Litchfield, N., Van Dissen, R., Berryman, K. and Jacobs, K. (2012). National seismic hazard model for New Zealand: 2010 update. Bulletin of the Seismological Society of America 102(4):1514-1542.

  38. Stern, R.J. (2004). Subduction initiation: spontaneous and induced. Earth and Planetary Science Letters, 226:275– 292

  39. Titov, V.V., Mofjeld, h.o., Gonzalez, f.i. and Newman, J. C. (1999). Offshore forecasting of Hawaiian tsunamis generated in Alaskan-Aleutian subduction zone, Pacific Marine Environmental Laboratory (PMEL), NOAA Tech. Memo. ERL PMEL-114, 26 pp

  40. Tselentis, G-A., Stavrakakis, G., Sokos, E., Gkika, F. and Serpetsidaki, A. (2010). Tsunami hazard assessment in the Ionian Sea due to potential tsunamogenic sources – results from numerical simulations. Natural Hazards and Earth System Sciences, 10:1021–1030

  41. Ward, S. (1982). On tsunami nucleation: an instantaneous modulated line source. Phys. Earth Planet. Inter., 27:273–285.

  42. Wells, D., Coppersmith, K. (1994). New empirical relationships among magnitude, rupture length, rupture area, and surface displacement. Bull. Seismol. Soc. Am., 84:974–1002.

  43. Yamashita, T., Sato, R. (1976). Correlation of tsunami and sub-oceanic Rayleigh wave amplitudes. J. Phys. Earth, 24:397–416

  44. Young, R., Bryant, E., Price, D. (1992). Catastrophic wave erosion on the southeastern coast of Australia: impact of the Lanai tsunamis ca. 105 ka? Geology 20:199–202.

Download references

Acknowledgments

Support is gratefully acknowledged by ARC DP0666203, DP110103024 and NSFC 41104077. The authors are grateful to Dr Y Liu for helpful discussions. The comments of three anonymous reviewers greatly enhanced this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. L. Xing.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xing, H.L., Ding, R.W. & Yuen, D.A. Tsunami Hazards along the Eastern Australian Coast from Potential Earthquakes: Results from Numerical Simulations. Pure Appl. Geophys. 172, 2087–2115 (2015). https://doi.org/10.1007/s00024-014-0904-x

Download citation

Keywords

  • Tsunami hazard
  • numerical simulation
  • shallow-water equation
  • Eastern Australian coast