Source Parameters of Earthquakes Recorded Near the Itoiz Dam (Northern Spain)

Abstract

We calculate the source parameters and attenuation from earthquakes recorded near the Itoiz dam, from 2004 to 2009, with magnitudes ranging between 1.2 and 5.2. We use a Genetic Algorithm in order to fit the three-component P-wave spectra with the spectral level, corner frequency, and attenuation factor as searching parameters. The obtained moments range from 1.72 × 1011 to 2.65 × 1015 Nm, the radii span from 0.09 to 1.00 km, and the stress drops vary from 0.006 to 29.462 MPa. The maximum value for the Q attenuation factor is 794, and the minimum value is 53. We find a good agreement between empirical and theoretical relationships between moment and magnitude. There seems to be a breakdown of self-similarity, but it could be due to the method used. We group the data by means of a Self-Organizing Map and the clusters found are related by their magnitude, and not by other considerations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Abercrombie, R. E. (1995), Earthquake source scaling relationships from 1 to 5 ML using seismograms recorded at 2.5 km. depth, J. Geophys. Res. 100, 24015–24036.

  2. Abercrombie, R. E. (1997), Near surface attenuation and site effects from comparison of surface and deep borehole recordings, Bull. Seism. Soc. Am. 87, 731–744.

  3. Abercrombie, R.E. and Leary, P. (1993), Source parameters of small earthquakes recorded at 2.5 km depth, Cajon Pass, Southern California: implications for earthquake scaling, Geophys. Res. Lett., 20, 1511–1514.

  4. Aki, K. and Richards, P. G. (1980), Quantitative seismology, W. H. Freeman, San Francisco.

  5. Allamehzadeh, M. and Mokhtari, M. (2003), Prediction of Aftershocks Distribution Using Self- Organizing Feature Maps (SOFM) and Its Application on the Birjand-Ghaen and Izmit Earthquakes. JSEE: Fall 2003, 5(3), 1–15.

  6. Archuleta, R., Cranswick, E., Mueller, C. and Spudich, P. (1982), Source parameters of the 1980 Mammoth Lakes, California, earthquake sequence, J. Geophys. Res. 87, 4595–4607.

  7. Atkinson, M. G. (1993), Earthquake source spectra in eastern north America, Bull. Seism. Soc. Am., 83, 1778–1798.

  8. Atkinson, M. G. (2004), Empirical attenuation of ground-motion spectral amplitudes in southeastern Canada and the northeastern United States, Bull. Seism. Soc. Am. 94, 1079–1095.

  9. Bindi, D., Spallarossa, D., Augliera, P. and Cattaneo, M. (2001), Source parameters from the aftershocks of the 1997 Umbria - Marche (Italy) seismic sequence. Bull. Seism. Soc. Am., 91, 448–455.

  10. Boatwright, J. (1978), Detailed spectral analysis of two small New York state earthquakes, Bull. Seism. Soc. Am. 68, 1117–1131.

  11. Brune, J. N. (1970), Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res. 75, 4997–5009.

  12. Brune, J. N. (1971), Correction to Tectonic stress and the spectra of seismic shear waves from earthquakes by J. N. Brune, J. Geophys. Res., 76, 5002.

  13. Carniel, R. Barbui, L. and Malisan, P. (2009), Improvement of HVSR technique by self-organizing map (SOM) analysis, Soil Dynamics and Earthquake Engineering, 29(6), 1097–1101, doi:10.1016/j.soildyn.2008.11.008.

  14. Castro, R.R., Munguía, L. and Brune, J.N. (1995), Source spectra and site response from P and S waves of local earthquakes in the Oaxaca, México subduction zone. Bull. Seism. Soc. Am, 85, 923–936.

  15. Davis, L. (ed.) (1991). Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York.

  16. De Matos, M., Osorio, P. and Johann, P. (2007), Unsupervised seismic facies analysis using wavelet transform and self-organizing maps, Geophysics, 72, 9–21. doi:10.1190/1.2392789.

  17. Del Pezzo, E., de Martino, S., de Miguel, F., Ibáñez, J. M. and Sorgente, S. (1991), Characteristics of the seismic attenuation in two tectonically active zones of Southern Europe, Pure Appl. Geophys., 135, 91–106.

  18. Deichmann, N. (2006), Local Magnitude, a Moment Revisited, Bull. Seism. Soc. Am., 96(4), 1267–1277, doi:10.1785/0120050115.

  19. Drouet, S., Souriau, A., and Cotton, F. (2005), Attenuation, seismic moment, and site effects for weak-motion events: application to the Pyrenees, Bull. Seism. Soc. Am., 95(5), 1731–1748. doi:10.1785/0120040105.

  20. Drouet, S., Chevrot, S., Cotton, F., and Souriau, A. (2008), Simultaneous inversion of source spectra, attenuation parameters, and site responses: application to the data of the French Accelerometric Network, Bull. Seism. Soc. Am. 98, 198–219.

  21. Durá-Gómez, I. and Talwani, P., (2010), Reservoir-induced seismicity associated with the Itoiz Reservoir, Spain: a case study, Geophys. J. Int., 181, 343–356, 2010, doi:10.1111/j.1365-246X.2009.04462.x.

  22. Esposito, A., Giudicepietro, F., D’Auria, L., Scarpetta, S., Martini, M. Coltelli, M. and Marinaro, M. (2008), Unsupervised neural analysis of very-long-period events at Stromboli volcano using the self-organizing maps, Bull. Seism. Soc. Am., 98(5), 2449–2459, doi:10.1785/0120070110.

  23. Essenreiter, R., Karrenbach M. and Treitel, S. (2001), Identification and classification of multiple reflections with self-organizing maps, Geophys.Prospect., 49(3), 341–352, doi:10.1046/j.1365-2478.2001.00261.x.

  24. Fehler, M., and Phillips, W.S. (1991), Simultaneous inversion for Q and source parameters of microearthquakes accompanying hydraulic fracturing in granitic rock, Bull. seism. Soc. Am, 81, 553–575.

  25. Fernández, I., Castro, R. and Huerta, C. (2010), The spectral decay parameter kappa in Northeastern Sonora, Mexico, Bull. Seism. Soc. Am., 100(1), 196–206, doi:10.1785/0120090049.

  26. Frankel, A., and Wennerberg, L. (1989), Microearthquake spectra from the Anza, alifornia, seismic network: site response and source scaling, Bull. Seism. Soc. Am. 79, 581–609.

  27. García García, J. M., Romacho M. D. and Jiménez, A. (2004), Determination of near-surface attenuation, with κ parameter, to obtain the seismic moment, stress drop, source dimension and seismic energy for microearthquakes in the Granada Basin (Southern Spain), Phys. Earth Planet. Int. 141, 9–26.

  28. García, J. M., Vidal, F., Romacho, M. D., Martín-Marfil, J. M., Posadas, A. and Luzón, F. (1996), Seismic source parameters for microearthquakes of the Granada basin (southern Spain), Tectonophysics, 261, 51–66.

  29. Gibowicz, S. J., Harjes, H. P., and Shäfer, M. (1990), Source parameters of seismic events at Heinrich Robert mine, Ruhr basin, Federal Republic of Germany: evidence for non double-couple events, Bull. Seism. Soc. Am. 80, 1157–1182.

  30. Goldberg, D. E. (1989). Genetic Algorithms, in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA.

  31. González, J. (2001), Estructura anelástica de coda-Q en la Península Ibérica, PhD Thesis, Departament d’Enginyeria del Terreny, Cartogràfica i Geofísica Universitat Politècnica de Catalunya.

  32. Haar, L.C., Fletcher, J.B., and Mueller, C.S. (1984), The 1982 Enola, Arkansas, swarm and scaling of ground motion in the eastern United States. Bull. Seism. Soc. Am., 74, 2463–2482.

  33. Hanks, Th. C., and Wyss, M. (1972), The use of body-wave spectra in the determination of seismic-source parameters, Bull. Seism. Soc. Am. 62, 561–589.

  34. Hauksson, E., Teng, T. and Henyey, T. L. (1987), Results from a 1500 m deep, three-level downhole seismometer array: site response, low Q values, and fmax, Bull. Seism. Soc. Am., 77, 1883–1904.

  35. Higgins, M., Ward, C. and De Angelis, S. (2011), Determining an Optimal Seismic Network Configuration Using Self-Organizing Maps, in Advances in Artificial Intelligence Lecture Notes in Computer Science, Vol. 6657/2011, 170–173, doi:10.1007/978-3-642-21043-3_20.

  36. Holland, J. (1975). Adaptation, in Natural and Artificial Systems, University of Michigan Press, Ann Arbor.

  37. Hough, S. E., Jacob, K., Busby, R., and Friberg, P. (1989), Ground motion from a magnitude 3.5 earthquake near Massena, New York: evidence for poor resolution of corner frequency for small events, Seism. Res. Lett., 60, 95–1000.

  38. Hua, W., Chen, Z., Zheng, S. (2012), Source Parameters and Scaling Relations for Reservoir Induced Seismicity in the Longtan Reservoir Area. Pure and Applied Geophysics, 170(5), 767–783.

  39. Hua, W., Zheng, S., Yan, C., Chen, Z. (2013), Attenuation, Site Effects, and Source Parameters in the Three Gorges Reservoir Area, China. Bulletin of the Seismological Society of America, 103(1), 371–382.

  40. Ide, S., Beroza, G. C., Prejean, S.G., and Ellsworth, W.L. (2003), Apparent break in earthquake scaling due to path and site effects on deep borehole recordings, J. Geophys. Res., 108, B52271, doi:10.1029/2001JB001617.

  41. Jiménez, A., García, J. M., and Romacho, M. D., (2005), Simultaneous Inversion of Source Parameters and Attenuation Factor Using Genetic Algorithms. Bull. Seism. Soc. Am. 94, 1401–1411, doi:10.1785/0120040116.

  42. Jiménez, A., Tiampo, K. F., Posadas, A. M., Luzón, F. and Donner, R. (2009), Analysis of complex networks associated to seismic clusters near the Itoiz reservoir dam. The European physical journal. Special topics, 181–195, doi:10.1140/epjst/e2009-01099-1.

  43. Jiménez, A., and Luzón, F. (2011), Weighted complex networks applied to seismicity: the Itoiz dam (Northern Spain). Nonlinear Processes in Geophysics, 18, 477–487, doi:10.5194/npg-18-477-2011.

  44. Jiménez, A. and Luzón, F. (2012), Diffusion Entropy Analysis and Hurst exponent near the Itoiz dam, in Handbook on the Classification and Application of Fractals, (Nova Science Publishers, Inc 2012), ISBN: 978-1-61324-198-1, pp. 115–131.

  45. Jin, A., Moya, C. A. and Ando, M. (2000), Simultaneous determination of site responses and source parameters of small earthquakes along the Atotsugawa fault zone, central Japan, Bull. Seism. Soc. Am., 90, 1430–1445.

  46. Jost, M. L., Büsselberg, T., Jost, O., and Harjes, H.P. (1998), Source parameters of injection-induced microearthquakes at 9 km depth at the KTB deep drilling site, Germany, Bull. Seism. Soc. Am., 88(3), 815–832.

  47. Klose, C. (2006), Self-organizing maps for geoscientific data analysis: geological interpretation of multidimensional geophysical data, Comput. Geosci., 10(3), 265–277, doi:10.1007/s10596-006-9022-x.

  48. Kohonen, T. (2001), Self-Organizing Maps, Springer Series in Information Sciences, Vol. 30, Third Extended Edition, 501 pp, Springer Berlin, Heidelberg, New York, 1995, 1997, 2001.

  49. Köhler, A., Ohrnberger, M., and Scherbaum, F. (2009), Unsupervised feature selection and general pattern discovery using Self-Organizing Maps for gaining insights into the nature of seismic wavefields, Comput. Geosci., 35(9), 1757–1767, doi:10.1016/j.cageo.2009.02.004.

  50. Köhler, A., Ohrnberger, M. and Scherbaum, F. (2010), Unsupervised Pattern Recognition in Continuous Seismic Wavefield Records using Self-Organizing Maps, Geophys. J. Int., 182, 1619–1630. doi:10.1111/j.1365-246X.2010.04709.x.

  51. Luzón, F., García-Jerez, A., Santoyo, M. A., and Sánchez-Sesma, F. J. (2009), A hybrid technique to compute the pore pressure changes due to time varying loads: application to the impounding of the Itoiz reservoir, northern Spain, in Poromechanics-iv, edited by H. Ling, A. Smyth and R.Betti, Destech Publications, Inc., Lancaster, Pennsylvania, ISBN: 978-1-60595-006-8, 1109– 1114.

  52. Luzón, F., García-Jerez, A., Santoyo, M. A., and Sánchez-Sesma, F. J. (2010), Numerical modelling of pore pressure variations due to time varying loads using a hybrid technique: the case of the Itoiz reservoir (Northern Spain), Geophys. J. Int., 180, 327–338, doi:10.1111/j.1365-246X.2009.04408.x.

  53. Madariaga, R. (1976), Dynamics of an Expanding Circular Fault, Bull. Seism Soc. Am., 66, 639–666.

  54. Mai, P.M. and Beroza, G.C. (2000), Source scaling properties from finite-fault rupture models. Bull. Seism. Soc. Am., 90, 604–615.

  55. Mandal, P., Rastogi, B.K. and Sarma, C.S.P. (1998), Source parameters of Koyna earthquakes, India, Bull. seism. Soc. Am., 88, 833–842.

  56. Maurer, W., Dowla, F. and Jarpe, S. (1992), Seismic event interpretation using self-organizing neural networks, in Proceedings of the International Society for Optical Engineering (SPIE), Vol. 1709, 950–958, doi:10.1117/12.139971.

  57. Michalewicz, Z. (1992). Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag, Berlin Heidelberg.

  58. Mori, J., and Frankel, A. (1990), Source parameters for small events associated with the 1986 north Palm Springs, California, earthquakes determined using empirical Green’s functions, Bull. Seism. Soc. Am. 80, 278–295.

  59. Moya, A., Aguirre J. and Irikura, K. (2000), Inversion of source parameters and site effects from strong ground motion records using genetic algorithms. Bull. Seism. Soc. Am., 90, 977–992.

  60. Musil, M. and Plešinger, A. (1996), Discrimination between local microearthquakes and quarry blasts by multi-layer perceptrons and Kohonen maps, Bull. Seism. Soc. Am., 86(4), 1077–1090.

  61. Oncescu, M.C., Camelbeeck, T. and Martin, H. (1994), Source parameters for the Roermond aftershocks of April 13–May 2, 1992 and site spectra for P and S waves at the Belgian seismic network, Geophys. J. Inter. 116, 673–682.

  62. Ozerdem, M. S., Ustundag, B. and Demirer, R. M. (2006), Self-organized maps based neural networks for detection of possible earthquake precursory electric field patterns, Advances in Engineering Software 37(4), 207–217, doi:10.1016/j.advengsoft.2005.07.004.

  63. Pedreira D., Pulgar, J. A. Gallart, J. and Díaz, J. (2003), Seismic evidence of Alpine crustal thickening and wedging from the western Pyrenees to the Cantabrian Mountains (north Iberia), J. Geophys. Res., 108(B4), 2204, doi:10.1029/2001JB001667.

  64. Plešinger, A., Růžek, B. and Boušková, A. (2000), Statistical interpretation of WEBNET seismograms by artificial neural nets, Studia Geophysica et Geodaetica, 44(2), 251–271, doi:10.1023/A:1022119011057.

  65. Prejean, S. G., and Ellsworth, W. L. (2001), Observations of earthquake source parameters at 2 km depth in the Long Valley Caldera, Eastern California, Bull. Seism. Soc. Am. 91, 165–177.

  66. Procház-ková, D. (1970), Properties of earthquake spectra as a function of length of record, Travaux de L’Inst. Geophys. de L’Académie Tchécosl. Sc., 352, 167–179.

  67. Pujades, L. G., Canas, J. A. Egozcue, J. J. Puigvi, M. A. Gallart, J. Lana, X. Pous, J. and Casas, A. (1990), Coda Q distribution in the Iberian Peninsula, Geophys. J. Int. 100, 285–301.

  68. Reeves, C. (1993). Modern Heuristic Techniques for Combinatorial Problems, Blackwell Scientific Publications.

  69. Rivas-Medina, A., Santoyo, M. A. Luzón, F. Benito, B. Gaspar-Escribano, J. M. and García-Jerez, A. (2011), Seismic Hazard and ground motion characterization at the Itoiz dam (Northern Spain), Pure Appl. Geophys., doi:10.1007/s00024-011-0405-0.

  70. Ruiz, M., Gaspa, O. Gallart, J. Díaz, J. Pulgar, J. A. García-Sansegundo, J. López-Fernández, and C. González-Cortina, J. M. (2006), Aftershocks series monitoring of the September 18, 2004 3 M = 4.6 earthquake at the western Pyrenees: A case of reservoir triggered seismicity?, Tectonophysics, 424, 223–243, doi:10.1016/j.tecto.2006.03.037.

  71. Santoyo, M. A., García-Jerez, A. and Luzón, F. (2010), A subsurface stress analysis and its possible relation with seismicity near the Itoiz Reservoir, Navarra, Northern Spain, Tectonophysics, 482, 205–215, doi:10.1016/j.tecto.2009.06.022.

  72. Sato, T., and Hirasawa, T. (1973), Body wave spectra from propagating shear cracks, J. Phys. Earth, 21, 415–431.

  73. Scholz, C.H. (1990), The mechanics of earthquakes and faulting. Cambridge University Press, Cambridge.

  74. Shieh, C. F (1995), Study on the free surface coupling effect of seismic waves. TAO, 6, 197–207.

  75. Smith, K.D., and Priestley, K.F. (1993), Aftershocks stress release along active fault planes of the 1984 Round Valley, California, earthquake sequence applying time – domain stress drop method, Bull. Seism. Soc. Am., 83, 144–159.

  76. Snoke, J. A. (1987), Stable determination of (Brune) stress drops, Bull. Seism. Soc. Am. 77, 530–538.

  77. Steidl, J. H., Tumarkin, A. G. and Archuleta, R. J. (1996), What is a reference site?, Bull. Seism. Soc. Am., 86, 1733–1748.

  78. Tarvainen, M. (1999), Recognizing explosion sites with a self-organizing network for unsupervised learning, Phys. Earth planet. Int., 113(1–4), 143–154.

  79. Tomic, J., Abercrombie R. E. and do Nascimento, A. F. (2009), Source parameters and rupture velocity of small M  2.1 reservoir induced earthquakes Geophys. J. Int., 179, 1013–1023 doi:10.1111/j.1365-246X.2009.04233.x.

  80. Tusa, G. and Gresta, S. (2008), Frequency-Dependent Attenuation of P Waves and Estimation of Earthquake Source Parameters in Southeastern Sicily, Italy, Bull. Seism. Soc. Am., 98(6), 2772–2794, doi:10.1785/0120080105.

  81. Zelt, B. C., Dotzev, N.T. Ellis, R.M. and Rogers, G.C. (1999), Coda Q in Southwestern Columbia, Canada, Bull. Seism. Soc. Am., 89, 1083–1093.

Download references

Acknowledgments

We wish to thank the Confederación Hidrográfica del Ebro (CHE) for allowing us to use their facilities and their seismic data. We also thank the Instituto Geográfico Nacional (IGN), Spain. This work was partially supported by the Secretaría General para el Territorio y la Biodiversidad part of the Ministerio de Medio Ambiente, Rural y Marino, Spain, under Grant 115/SGTB/2007/8.1, by EU with FEDER and by the research team RNM-194 of the Junta de Andalucía, Spain. The work of AJ is supported by a Juan de la Cierva grant, from the Spanish Government.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Jiménez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiménez, A., García-García, J.M., Romacho, M.D. et al. Source Parameters of Earthquakes Recorded Near the Itoiz Dam (Northern Spain). Pure Appl. Geophys. 172, 3163–3177 (2015). https://doi.org/10.1007/s00024-014-0883-y

Download citation

Keywords

  • Source parameters
  • Reservoir induced seismicity
  • Genetic Algorithm
  • Self-Organizing maps