Skip to main content
Log in

Characterization of the Tail of the Distribution of Earthquake Magnitudes by Combining the GEV and GPD Descriptions of Extreme Value Theory

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript


The present work is a continuation and improvement of the method suggested in Pisarenko et al. (Pure Appl Geophys 165:1–42, 2008) for the statistical estimation of the tail of the distribution of earthquake sizes. The chief innovation is to combine the two main limit theorems of Extreme Value Theory (EVT) that allow us to derive the distribution of T-maxima (maximum magnitude occurring in sequential time intervals of duration T) for arbitrary T. This distribution enables one to derive any desired statistical characteristic of the future T-maximum. We propose a method for the estimation of the unknown parameters involved in the two limit theorems corresponding to the Generalized Extreme Value distribution (GEV) and to the Generalized Pareto Distribution (GPD). We establish the direct relations between the parameters of these distributions, which permit to evaluate the distribution of the T-maxima for arbitrary T. The duality between the GEV and GPD provides a new way to check the consistency of the estimation of the tail characteristics of the distribution of earthquake magnitudes for earthquake occurring over an arbitrary time interval. We develop several procedures and check points to decrease the scatter of the estimates and to verify their consistency. We test our full procedure on the global Harvard catalog (1977–2006) and on the Fennoscandia catalog (1900–2005). For the global catalog, we obtain the following estimates: \( \hat{M}_{{\rm max} } \) = 9.53 ± 0.52 and \( \hat{Q}_{10} (0.97) \) = 9.21 ± 0.20. For Fennoscandia, we obtain \( \hat{M}_{{\rm max} } \) = 5.76 ± 0.165 and \( \hat{Q}_{10} (0.97) \) = 5.44 ± 0.073. The estimates of all related parameters for the GEV and GPD, including the most important form parameter, are also provided. We demonstrate again the absence of robustness of the generally accepted parameter characterizing the tail of the magnitude-frequency law, the maximum possible magnitude M max, and study the more stable parameter Q T (q), defined as the q-quantile of the distribution of T-maxima on a future interval of duration T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others


  • Ahjes, T. and Uski M. (1992) Earthquakes in Northern Europe in 1375-1989, Tectonophysics, vol. 207, pp. 1–23.

  • Bassi, F., Embrechts, P. and M. Kafetzaki (1998) Risk Management and Quantile Estimation, in A Practical Guide to Heavy Tails, R. Adler, R. Feldman, M. Taqqu (Eds), Birkhauser, 1998, pp. 111–130.

  • Bender, B.K. and D.M. Perkins (1993) Treatment of parameter uncertainty and variability for a single seismic hazard map, Earthquake Spectra 9 (2), 165–195.

  • Bird, P., and Y. Y. Kagan (2004) Plate-tectonic analysis of shallow seismicity: Apparent boundary width, beta, corner magnitude, coupled lithosphere thickness, and coupling in seven tectonic settings, Bull. Seismol. Soc. Am., 94 (6), 2380–2399.

  • Black, N., Jackson, D. and Rockwell, T. (2004) Maximum Magnitude in Relation to Mapped Fault Length and Fault Rupture, American Geophysical Union, Fall Meeting 2004, abstract #S41A-0922.

  • Christopeit N. (1994) Estimating parameters of an extreme value distribution by methods of moments, Journal of Statistical Planning and Inference, 41, 173–186.

  • Coles S. and M. Dixon (1999) Likelihood-based Inference for Extreme Value Models, Extremes, 2:1, 5–23.

  • Cosentino P., Ficara V., and D. Luzio (1977) Truncated exponential frequency-magnitude relationship in the earthquake statistics. Bull. Seism. Soc. Am. 67, 1615–1623.

  • Cox D.R. and P.A. Lewis (1966) The Statistical Analysis of Series of Events, John Wiley, London-New York.

  • Cramer H. (1940) Mathematical Methods of Statistics, Princeton Univ. Press, New York.

  • Dargahi-Noubary G.R. (1983) A procedure for estimation of the upper bound for earthquake magnitudes. Phys. Earth Planet Interiors. 33, 91–93.

  • Embrechts, P., C. Kluppelberg, T. Mikosch (1997) Modelling Extrememal Events, Springer. Epstein, B.C. and C. Lomnitz (1966) A model for the occurrence of large earthquakes, Nature 211, 954–956.

  • Fréchet, M. (1927) Sur la loi de probabilité de l'écart maximum. Ann. Soc. Polon. Math. 6, 93.

  • Fisher, R.A., Tippett, L.H.C. (1928) Limiting forms of the frequency distribution of the largest and smallest member of a sample. Proc. Cambridge Philosophical Society 24, 180–190.

  • Gutenberg, B. and C. F. Richter (1942) Earthquake magnitude, intensity, energy and acceleration, Bull. Seism. Soc. Am. 32, 163–191.

  • Gutenberg B., Richter C. (1954) Seismicity of the Earth. 2nd Edition, Princeton Univ. Press.

  • Gutenberg, B. and C. Richter (1956) Earthquake magnitude, intensity, energy, and acceleration, part II, Bull. Seism. Soc. Am. 46, 105–145.

  • Hosking, J.R., Wallis, J.R., and Wood, E.F. (1985) Estimation of the Generalized Extreme-Value Distribution by the Method of Probability-Weighted Moments, Technometrics 27, 251–261.

  • Kagan Y.Y. (1991) Seismic moment distribution. Geophys. J. Int. 106, 123–134.

  • Kagan Y.Y. (1996) Comment onThe Gutenberg-Richter or characteristic earthquake distribution, which is it?by Steven G. Wesnousky. Bull. Seism. Soc. Am. 86, 274–285.

  • Kagan Y.Y. (1997) Seismic moment-frequency relation for shallow earthquakes: Regional comparison. Journ. of Geophys. Research. 102, 2835–2852.

  • Kagan Y.Y. (1997) Earthquake Size Distribution and Earthquake Insurance. Commun. Statist. Stachastic Models, 13(4), 775–797.

  • Kagan Y.Y. (1999) Universality of the Seismic Moment-frequency Relation. Pure Appl. Geophys. 155, 537–573.

  • Kagan Y.Y. (2002) Seismic moment distribution revisited: I. Statistical results. Geophys. J. Int. 148, 520–541.

  • Kagan Y.Y. (2002) Seismic moment distribution revisited: II. Moment conservation principle. Geophys. J. Int. 149, 731–754.

  • Kagan Y.Y. and F. Schoenberg (2001) Estimation of the upper cutoff parameter for the tapered distribution. J. Appl. Probab. 38A, 901–918.

  • Kijko A. (1999) Statistical Estimation of Maximum Regional Earthquake Magnitude mmax, 12th European Conference on Earthquake Engineering, FW:022, 1–22.

  • Kijko, A. (2004) Estimation of the Maximum Earthquake Magnitude, Mmax, Pure Appl. Geophys, 161, 1–27.

  • Kijko, A. and G. Graham (1998) Parametric-historic procedure for probabilistic seismic hazard analysis. Part I: estimation of maximum regional magnitude Mmax, Pure Appl. Geophys. 152, 413–442.

  • Kijko, A., S. Lasocki and G. Graham (2001) Non-parametric seismic hazard in mines. Pure Appl. Geophys. 158, 1655–1675.

  • Kijko A. and Sellevoll M.A. (1989) Estimation of earthquake hazard parameters from incomplete data files. Part I, Utilization of extreme and complete catalogues with different threshold magnitudes. Bull. Seism. Soc. Am. 79, 645–654.

  • Kijko A. and Sellevoll M.A. (1992) Estimation of earthquake hazard parameters from incomplete data files. Part II, Incorporation of magnitude heterogeneity. Bull. Seism. Soc. Am. 82, 120–134.

  • Knopoff L. and Kagan Y. (1977) Analysis of the Extremes as Applied to Earthquake Problems, J. Geophys. Res. 82, 5647–5657.

  • Knopoff L., Kagan Y., and R. Knopoff (1982) b-values for foreshocks and aftershocks in real and simulated earthquake sequences, Bull. Seism. Soc. Amer. 72 (5), 1663–1675.

  • Main Y., Irving D., Musson R. and A. Reading (1999) Constraints on frequency-magnitude relation and maximum magnitudes in the UK from observed seismicity and glacio-isostatic recovery rates. Geophys. J. Int. 137, 535–550.

  • Main Y. (2000) Apparent Breaks in Scaling in Earthquake Cumulative Frequency-Magnitude Distribution: Fact or Artifact? Bull. Seism. Soc. Am. 90, 86–97.

  • Molchan G., Kronrod T., and Panza G.F. (1997) Multi-scale seismicity model for seismic risk. Bull. Seis. Soc. Am. 87, 1220–1229.

  • Ogata Y., and K. Katsura (1993) Analysis of temporal and special heterogeneity of magnitude frequency distribution inferred from earthquake catalogues. Geophys. J. Int. 113, 727–738.

  • Pisarenko V.F. (1991) Statistical evaluation of maximum possible magnitude. Izvestia, Earth Physics, 27, 757–763.

  • Pisarenko V.F., Lyubushin A.A., Lysenko V.B., and T.V. Golubeva (1996) Statistical Estimation of Seismic Hazard Parameters: maximum possible magnitude and related parameters. Bull. Seism. Soc. Am. 86, 691–700.

  • Pisarenko V.F., and D. Sornette (2003) Characterization of Frequency of Extreme Earthquake Events by the Generalized Pareto Distribution. Pure Appl. Geophys. 160, 2343–2364.

  • Pisarenko V.F., and D. Sornette (2004) Statistical Detection and Characterization of a Deviation from the Gutenberg-Richter Distribution above Magnitude 8. Pure Appl. Geophys. 161, 839–864.

  • Pisarenko V.F., and M.V. Rodkin (2007) Distributions with Heavy Tails: Application to the Analysis of catastrophes, Computational Seismology issue 38, 242 p. (in Russian).

  • Pisarenko V.F., Sornette A., Sornette D., and M.V. Rodkin (2008) New approach to the Characterization of M max and of the Tail of the Distribution of Earthquake Magnitudes, Pure Appl. Geophys. 165, 1–42.

  • Smith R. (1985) Maximum Likelihood Estimation in a Class of Non-Regular Cases, Biometrika, 72, 67–92.

  • Smith R. (1990) Extreme value theory. In: Ledermann, W. (Chief Ed.) Handbook of Applicable Mathematics, Supplement, pp. 437–472. Wiley, Chichester.

  • Sornette, A., Davy, P. and Sornette, D. (1990) Growth of fractal fault patterns, Phys. Rev. Letters, 65, 2266–2269.

  • Sornette, A. and Sornette, D. (1989) Self-organized criticality and earthquakes, Europhys. Lett. 9, 197–202.

  • Sornette, A. and Sornette, D. (1990) Earthquake rupture as a critical point, Tectonophysics, 179, 327–334.

  • Sornette, A. and Sornette, D. (1999) Renormalization of earthquake aftershocks, Geophys. Res. Lett., 26, 1981–1984.

  • Sornette, D., L. Knopoff, Y.Y. Kagan and C. Vanneste (1996) Rank-ordering statistics of extreme events: application to the distribution of large earthquakes, J. Geophys. Res. 101, 13883–13893.

  • Thompson, E.M, L.G. Baise and R.M. Vogel (2007) An Index Earthquake Frequency Distribution, in press in J. Geophys. Res. (Solid Earth).

  • Uski, M. and Pelkonen E. (2006) Earthquakes in Northern Europe in 2005, Inst. Seismology, Univ. Helsinki, Report R-232.

  • Utsu T. (1999) Representation and Analysis of the Earthquake Size Distribution: A Historical Review and Some New Approaches. Pure Appl. Geophys. 155, 509–535.

  • Ward, S.N. (1997) More on Mmax, Bulletin of the Seismological Society of America 87 (5), 1199–1208.

  • Wesnousky S.G. (1994) The Gutenberg-Richter or characteristic earthquake distribution, which is it? Bull. Seism. Soc. Am. 84, 1940–1959.

  • Wu Z.L. (2000) Frequency-size distribution of global seismicity seen from broad-band radiated energy. Geophys. J. Int. 142, 59–66.

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. F. Pisarenko.

Appendix: Proofs of the Three Corollaries

Appendix: Proofs of the Three Corollaries

Corollary 1

Let F H (x) be the GPD-distribution

$$ \begin{array}{*{20}l} {F_{H} (x) = G_{H} (x\,|\xi ,\,s) = 1{-}(1 + \xi (x - H)/s)^{ - \, 1 \, /\xi } ,} & {x \ge H} \\ \end{array}. $$

In accordance with Lomnitz formula (7), up to terms of order exp(−λT), the distribution function of the T-maxima M T is given by

$$ \begin{array}{*{20}l} {\varPsi_{T} (x) = { \exp }( - \lambda T \cdot (1 + \xi (x - H)/s)^{ - \, 1 \, /\xi } )} & {{\text{if}}\,\lambda T \gg1} \\ \end{array} . $$

If we set

$$ \begin{array}{*{20}l} {\sigma = \sigma (T) = s \cdot (\lambda T);} & {\mu = \mu (T,H) = H{-}(s/\xi )[1 - (\lambda T)^{\xi } ]} \\ \end{array} $$

then we can rewrite (42) in the form of a GEV-distribution

$$ \varPsi_{T} (x) = { \exp }\{ - [1 + \xi (x - \mu )/\sigma ]^{ - 1/\xi } \} . $$

It should be noted that, in Eq. (41), F H (x) is defined only for x ≥ H, while Ψ T (x) does not vanish at x = H, since:

$$ \varPsi_{T} (H) = { \exp }( - \lambda T). $$

But according to the condition of Corollary 1, we can neglect terms of order exp(−λT). Therefore, one can complement the domain of definition of Ψ T (H) for x < H (as it is required for the GEV-distribution), since Ψ T (x) remains smaller than exp(−λT) for x < H.

Inversely, if we assume that M T have a GEV-distribution, then using the transformation law (43) for the parameters, we have

$$ \begin{array}{*{20}l} {s = \sigma /(\lambda T);} & {H = \mu + (s/\xi )[1 - (\lambda T)^{\xi } ],} \\ \end{array} $$

and we get the distribution function of M T in the form (41), from which it follows that F H (x) is a GPD-distribution.

Corollary 2

Let X be distributed according to the GPD-distribution:

$$ \begin{array}{*{20}l} {F_{H} (x) = 1{-}(1 + \xi (x - H)/s)^{ - 1/\xi } ,} & {x \ge H.} \\ \end{array} $$

Then, for any K > H the conditional distribution of X under the condition X > K is

$$ \begin{array}{*{20}l} {F_{K} (x) = \{ F_{H} (x){-}F_{H} (K)\} /\{ 1 - F_{h} (K)\} ,} & {x \ge K.} \\ \end{array}. $$

Putting (46) into (47), we get

$$ \begin{array}{*{20}l} {F_{K} (x) = 1{-}(1 + \xi (x - K)/S)^{ - 1/\xi } ,} & {x \ge K,} \\ \end{array} $$


$$ S = s + \xi (K - H). $$

Corollary 3

This corollary follows from the proof of Corollary 1 above.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisarenko, V.F., Sornette, A., Sornette, D. et al. Characterization of the Tail of the Distribution of Earthquake Magnitudes by Combining the GEV and GPD Descriptions of Extreme Value Theory. Pure Appl. Geophys. 171, 1599–1624 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: