Skip to main content

Simulation of Tsunami Hazards Affecting the East Cape Region, New Zealand

Abstract

The east coast of New Zealand is known for being exposed to a variety of tsunami sources, both those arising from the nearby Hikurangi subduction zone and its associated crustal faults, and those arising from more distant parts of the Pacific. Using numerical simulations with a parallelized computer model, we assess the tsunami inundation hazard posed to the most populated coastal communities on the east coast of the East Cape region, New Zealand, which had not been evaluated before. Our tsunami inundation hazard study is based on severe but realistic scenario events from a selection of local and distant earthquake tsunami sources. Such modelling covers a gap in knowledge caused by the short historical record of tsunamis in this region (covering <200 years), and the sparse observations of historical tsunamis due to a largely rural population. We identify that the worst flooding is often not associated with the first wave arrivals, and that coastal oscillations can last a long time in distant events. The modelling results allow us to determine typical characteristics of the pattern of flooding, specific to an area. This information is important for emergency planning and preparedness.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. By the term amplitude, we describe the referencing-water-level-to-peak height.

References

  • Alexandra, K., Cain, G., and Iwasaki, P. (2009). Tsunami education: a blueprint for coastal communities, the Pacific Tsunami Museum and the County of Hawai‘i Planning Department, January 2009.

  • Beanland, S., and J. Haines (1998). The kinematics of active deformation in the North Island, New Zealand, determined from geological strain rates, N. Z. J. Geol. Geophys., 41, 311–323.

  • Beavan, J., M. Moore, C. Pearson, M. Henderson, B. Parsons, S. Bourne, P. England, D. Walcott, G. Blick, D. Darby, and K. Hodgkinson (1999). Crustal deformation during 1994–1998 due to oblique continental collision in the central Southern Alps, New Zealand, and implications for seismic potential of the Alpine fault, J. Geophys. Res., 104, 25, 233–25255.

  • Beavan, J., P. Tregoning, M. Bevis, T. Kato, and C. Meertens (2002). Motion and rigidity of the Pacific Plate and implications for plate boundary deformation, J. Geophys. Res., 107(B10), 2261, doi:10.1029/2001JB000282.

  • Bell, R. E., Sutherland, R., Barker, D. H., Henrys, S. A., Bannister, S. C., (2008). Eos Trans. AGU, 89(53), Fall Meet. Suppl., Abstract T23A-1995.

  • Bellotti, G., Briganti, R., and Beltrami, G. M. (2012). The combined role of bay and shelf modes in tsunami amplification along the coast. Journal of Geophysical Research, 117(C8), C08027.

  • Berryman (2005). Review of tsunami hazard and risk in New Zealand, compiled by Kelvin Berryman. Institute of Geological and Nuclear Sciences client report 2005/104, Wellington, New Zealand.

  • Cho, Y.-S. (1995). Numerical simulation of tsunami and runup. PhD thesis, Cornell University, 1995.

  • Collot, J.-Y., Lewis, K. B., Lamarche, G., Lallemand, S. (2001). The giant Ruatoria avalanche on the northern Hikurangi margin, New Zealand: Result of oblique seamount subduction. Journal of Geophysical Research 106, 19271–19297.

  • Crisp (1877) Notes on the earthquake wave as felt at Gisborne. In: Proceedings of the Auckland Institute, second meeting 25th June, 1877, vol 10. Transactions and Proceedings of the New Zealand Institute, pp 5550–5551.

  • DeMets, C., R. G. Gordon, and D. Argus (2010). Geologically current plate motions, Geophys. J. Int., 181, 1–80, doi:10.1111/j.1365-246X.2009.04491.x.

  • Dominey-Howes, D. and Thaman, R. UNESCO-IOC International Tsunami Survey Team Samoa, Interim Report of Field Survey 14th–21st October 2009. Misc. Report No. 2, 26–27 (Aust. Tsunami Res. Centre, Univ. New South Wales, 2009).

  • Downes, G. (2011). Historical tsunami database for New Zealand, Unpublished database, GNS Science, Lower Hutt, New Zealand.

  • Fehr, I., Grossi, P., Hernandez, S., Krebs, T., McKay, S., Muir-Wood, R., Pomonis, A., Domenico del Re, Souch, C., Windeler, D., Xie, Y. (2006). Managing Tsunami Risk in the Aftermath of the 2004 Indian Ocean Earthquake and Tsunami, report of Risk Management Solutions, Inc., USA 2006.

  • Goff, J., Pearce, S., Nichol, S. L., Chague-Goff, C., Horrocks, M. and Strotz, L. (2010a) Multi-proxy records of regionally-sourced tsunamis, New Zealand. Geomorphology, 118(2010) 369–382.

  • Gonzalez, F. I., Geist, E. L., Jaffe, B., Kanoglu, U., Mofjeld, H., Synolakis, C. E., Titov, V. V., Arcas, D., Bellomo, D., Carlton, D., Horning, T., Johnson, J., Newman, J., Parsons, T., Peters, R., Peterson, C., Priest, G., Venturato, A., Weber, J., Wong, F. and Yalciner, A. (2009) Probabilistic tsunami hazard assessment at Seaside, Oregon for near- and far-field seismic sources. Journal of Geophysical Research, Vol. 114, C11023, doi:10.1029/2008JC005132, 2009.

  • Harris, L. M. and Durran, D. R. (2010). An idealized comparison of one-way and two-way grid nesting. Monthly Weather Review, 138:2174–2187, 2010.

  • Holt, W. E., and A. J. Haines (1995). The kinematics of northern South Island, New Zealand, determined from geologic strain rates, J. Geophys. Res., 100, 17991–18010.

  • Ioualalen, M.; Asavanant, J.; Kaewbanjak, N.; Grilli, S. T., Kirby, J. T. and Watts, P. (2007). Modeling the 26 December 2004 Indian Ocean tsunami: Case study of impact in Thailand, Journal of Geophysical Research, Vol. 112, C07024, doi:10.1029/2006JC003850, 2007.

  • Jaffe, B. E. et al. (2006) Northwest Sumatra and Offshore Islands Field Survey after the December 2004 Indian Ocean Tsunami. Earthquake Spectra, Volume 22, No. S3, pages S105–S135, June 2006.

  • Lane, E. M., Gillibrand, P. A., Wang, X., and Power, W. (2012). A Probabilistic Tsunami Hazard Study of the Auckland Region, Part II: Inundation Modelling and Hazard Assessment, Pure Appl. Geophys., doi:10.1007/s00024-012-0538-9.

  • Lane, E. M., Walters, R., Wild, M., Arnold, J., Enright, M., Roulston, H., and Mountjoy, J. (2007) Otago region hazards management investigation: tsunami modelling study. NIWA Client Report: CHC2007-030, September 2007.

  • Lane, E. M.; Walters, R.; Arnold, J.; Enright, M.; Roulston, H. (2009). Auckland Regional Council Tsunami Inundation Study. Prepared by National Institute of Water and Atmospheric Research Ltd for Auckland Regional Council. Auckland Regional Council Technical Report 2009/113.

  • Liu, P. L.-F., Cho, Y.-S., Yoon, S. B., and Seo, S. N. (1994). Numerical simulations of the 1960 Chilean tsunami propagation and inundation at Hilo, Hawaii. In Recent Development in Tsunami Research, pp 99–115. Kluwer Academic Publishers, 1994.

  • Liu, P. L. F., Cho, Y.-S., Briggs, M. J., Synolakis, C. E., and Kanoglu, U. (1995). Run-up of solitary waves on circular island. J. Fluid Mech., 302:259–285, 1995.

  • Liu, P. L.-F., Woo, S.-B., and Cho, Y.-S. (1998) Computer programs for tsunami propagation and inundation. Technical report, Cornell University, 1998.

  • Liu, P. L.-F., Wang, X., and Solisbury, A. J. (2009). Tsunami hazard and forecast study in South China Sea. Journal of Asian Earth Science, Vol. 36(1), pp. 2–12, 2009.

  • Mazengarb, C., Speden, I. G. (2000). Geology of the Raukumara area: scale 1:250,000. Lower Hutt: Institute of Geological and Nuclear Sciences Limited. Institute of Geological and Nuclear Sciences 1:250,000 geological map 6. 60 p. + 1 folded map.

  • McCaffrey, R. (2008). Global frequency of magnitude 9 earthquakes. Geology, March 2008; v. 36; no. 3; p. 263–266; doi:10.1130/G24402A.1.

  • MCDEM (2008). National tsunami signage technical standard for the Civil Defense Emergency Management (CDEM) Sector [TS01/08], p. 20, Wellington, New Zealand.

  • Mimura, N., Yasuhara, K., Kawagoe, S., Yokoki H., Kazama, S. (2011). Damage from the Great East Japan Earthquake and Tsunami—A quick report, Mitigation and Adaptation Strategies for Global Change, v. 16, 803–818, doi:10.1007/s11027-011-9297-7, 2011.

  • National Police Agency (NPA) Report (2013). http://www.npa.go.jp/archive/keibi/biki/higaijokyo_e.pdf, retrieved 13 March 2013.

  • Norris, R. J., and A. F. Cooper (2000). Late Quaternary slip rates and slip partitioning on the Alpine Fault, New Zealand, J. Struct. Geol., 23, 507–520.

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half space. Bull. Seism. Soc. Am., 75, 1135–1154.

  • Okal, E. A., Borrero, J. C., and Synolakis, C. E. (2006). Evaluation of tsunami risk from regional earthquake at Pisco, Peru. BSSA, Vol. 96, No. 5, pp. 1634–1648.

  • Okal, E. A., and Synolakis, C. E. (2008) Far-field tsunami hazard from mega-thrust earthquakes in the Indian Ocean. Geophys. J. Int. (2008) 172, 995–1015.

  • Power, W., Downes, G., and Stirling, M. (2007). Estimation of tsunami hazard in New Zealand due to South American earthquakes. Pure and Applied Geophysics, 164(2/3).

  • Power, W. L.; Reyners, M. E.; Wallace, L. M. (2008). Tsunami hazard posed by earthquakes on the Hikurangi subduction zone interface, GNS Science consultancy report 2008/40. 58 p. EQC Report 06/521.

  • Power, W.L., and Tolkova, E. (2013). Forecasting tsunamis in Poverty Bay, New Zealand, with deep-ocean gauges. Ocean Dynamics (2013) 63:1213–1232.

  • Power, W., Wallace, L.M., Wang, X., and Reyners, M. (2012a). Tsunami hazard posed to New Zealand by the Kermadec and Southern New Hebrides subduction margins: an assessment based on plate boundary kinematics, interseismic coupling, and historical seismicity. Pure Appl. Geophys. 169, 1–36., doi:10.1007/s00024-011-0299-x.

  • Power, W., Wang, X., Lane, E., and Gillibrand, P. (2012b). A Probabilistic Tsunami Hazard Study of the Auckland Region, Part I: Propagation Modelling and Tsunami Hazard Assessment at the Shoreline. Pure and Applied Geophysics, doi:10.1007/s00024-012-0543-z.

  • Power, W. L. (compiler) (2013). Review of Tsunami Hazard in New Zealand (2013 update), GNS Science Consultancy Report 2013/131, 222 p.

  • Statistics New Zealand (2012). Subnational population estimates at 30 June 2012, Statistics New Zealand. http://www.stats.govt.nz/~/media/Statistics/browse-categories/population/estimates-projections/subnat-pop-est/SubPopEstJune12localgovt.xls, retrieved on 20 March 2013.

  • Stein, S., and Okal, E. A. (2011). The size of the 2011 Tohoku earthquake need not have been a surprise, Eos, Vol. 92, No. 27, 5 July 2011.

  • Stirling, M.W., McVerry, G. H., and K. R. Berryman (2002). A New Seismic Hazard Model for New Zealand, Bulletin of the Seismological Society of America, Vol. 92, No. 5, pp. 1878–1903, June 2002.

  • Stirling, M.; McVerry, G.; Gerstenberger, M.; Litchfield, N.; Van Dissen, R.; Berryman, K; Barnes, P.; Wallace, L.; Villamor, P.; Langridge, R.; Lamarche, G.; Nodder, S.; Reyners, M.; Bradley, B.; Rhoades, D.; Smith, W.; Nicol, A.; Pettinga, J.; Clark, K., and K. Jacobs (2012). National Seismic Hazard Model for New Zealand: 2010 Update, Society of America August 2012 vol. 102, no. 4, 1514–1542, doi:10.1785/0120110170.

  • Titov, V. V., and Gonzalez, F. I. (1997). Implementation and testing of the method of splitting tsunami (MOST), NOAA Technical Memorandum ERL-PMEL-112, PB98-122773, Pacific Marine Environmental Laboratory, Seattle, Washington, 11 pp.

  • Titov, V. V., Gonzalez, F. I., Bernard, E. N., Eble, M. C., Mofjeld, H. O., Newman, J. C., and Venturato, A. J. (2005) Real-time tsunami forecasting: challenges and solutions. Nat. Hazards, 35(1), Special Issue, U.S. National Tsunami Hazard Mitigation Program, doi:10.1007/s11069-004-2403-3, 41–58 (2005).

  • Titov, V. V., Moore, C. W., Greenslade, D. J. M., Pattiaratchi, C., Badal, R., Synolakis, C. E., and Kanoglu, U. (2011) A new tool for inundation modelling: community modelling interface for tsunami (ComMIT). Pure Appl. Geophys. Vol. 168, Issue 11, pp 2121–2131, November 2011.

  • Tolkova, E., and Power, W. (2011). Obtaining natural oscillatory modes of bays and harbors via Empirical Orthogonal Function analysis of tsunami wave fields, Ocean Dynam. 61:731–751, doi:10.1007/s10236-011-0388-5.

  • Tsunami risk assessment and mitigation for the Indian Ocean; knowing your tsunami risk—and what to do about it IOC Manual and Guides No. 52, Paris: UNESCO, 2009 (English).

  • Tsuru, J., and Murakami, S. (2011). Summary of the Field Survey and Research on “The 2011 off the Pacific coast of Tohoku Earthquake” (the Great East Japan Earthquake), joint report of National Institute for Land and Infrastructure Management (NILIM) and Building Research Institute (BRI) in Japan, 2011.

  • Van Dissen, R., and R. S. Yeats (1991). Hope fault, Jordan thrust, and uplift of the Seaward Kaikoura Range, New Zealand, Geology, 19, 393–396.

  • Walcott, R. I. (1984). The kinematics of the plate boundary zone through New Zealand: A comparison of short- and long-term deformations, Geophys. J. R. Astron. Soc., 79, 613–633.

  • Wallace, L. M., and J. Beavan (2010a). Diverse slow slip behavior at the Hikurangi subduction margin, New Zealand, J. Geophys. Res., 115, B12402, doi:10.1029/2010JB007717.

  • Wallace, L.M., and Beavan, J. (2010b) Diverse slow slip behaviour at the Hikurangi subduction margin, New Zealand. Journal of Geophysical Research, Vol. 115, B12402, 2010.

  • Wallace, L.M., Beavan, J., McCaffrey, R., and Darby, D., (2004). Subduction zone coupling and tectonic block rotations in the North Island, New Zealand. J. Geophys. Res, 109(B12406): doi:10.1029/2004JB003241.

  • Wallace, L.M., Barnes, P., Beavan, J., Van Dissen, R., Litchfield, N., Mountjoy, J., Langridge, R., Lamarche, G., and Pondard, N. (2012). The kinematics of a transition from subduction to strike-slip: An example from the central New Zealand plate boundary. Journal of Geophysical Research, Vol. 117, B02405, 2012.

  • Walters, R. A., Barnes, P., and Goff, J. R. (2006a). Locally generated tsunami along the Kaikoura coastal margin: Part 1. Fault ruptures, New Zealand Journal of Marine and Freshwater Research, 40:1, 1–16.

  • Walters, R. A., Barnes, P., Lewis, K., Goff, J. R., and Fleming, J. (2006b). Locally generated tsunami along the Kaikoura coastal margin: Part 2. Submarine landslides, New Zealand Journal of Marine and Freshwater Research, 40:1, 17–28.

  • Walters, R. A., Goff, J., Wang, K. (2006c) Tsunamigenic sources in the Bay of Plenty, New Zealand. Science of Tsunami Hazards, Vol. 24, No. 5, page 339 (2006).

  • Wang, X., and Liu, P. L.-F. (2005). A numerical investigation of Boumerdes-Zemmouri (Algeria) earthquake and tsunami. Computer Modeling in Engineering and Science, Vol. 10, No. 2, pp. 171–184.

  • Wang, X. and Liu, P. L.-F. (2006). An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami, Journal of Hydraulic Research, Vol. 44, No. 2 (2006), pp. 147–154.

  • Wang, X., and Liu, P. L.-F. (2007). Numerical simulation of the 2004 Indian Ocean tsunami—Coastal Effects. Journal of Earthquake and Tsunami. Vol. 1, No. 3 (2007). pp 273–297.

  • Wang, X. (2008). Numerical Modelling of surface and internal waves over shallow and intermediate water. PhD thesis, Cornell University 2008.

  • Wang, X., Orfila, A., and Liu, P. L.-F. (2008). Numerical simulations of tsunami runup onto a three-dimensional beach with shallow water equations. ACOE. vol. 10, pp. 249–253, 2008. World Scientific Publishing Co.

  • Wang, X., and Power, W. L. (2011), COMCOT: A Tsunami Generation Propagation and Run-up Model. GNS Science Report 2011/43 in press.

Download references

Acknowledgments

The authors are grateful to Laura Wallace and Martin Reyners for helpful discussions regarding potential tsunami sources. They also gratefully acknowledge the assistance of Neville Palmer in acquiring topographic data, that of Gegar Prasetya in preparing modelling grids, and that of Gaye Downes in interpreting historical records. We also would like to thank Richard Steele of Gisborne District, who provided funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aggeliki Barberopoulou.

Appendix: Source Parameters

Appendix: Source Parameters

Table 3 presents summary parameters for the tsunami source models used in this study.

Table 3 Summary parameters for the tsunami source models in this study

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barberopoulou, A., Wang, X., Power, W. et al. Simulation of Tsunami Hazards Affecting the East Cape Region, New Zealand. Pure Appl. Geophys. 172, 2117–2137 (2015). https://doi.org/10.1007/s00024-014-0842-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-014-0842-7

Keywords

  • Tsunamis
  • New Zealand
  • hazard assessment
  • inundation modelling
  • East Cape
  • Raukumara Peninsula
  • Gisborne