Pure and Applied Geophysics

, Volume 171, Issue 9, pp 2443–2459 | Cite as

Do Cloud Properties in a Puerto Rican Tropical Montane Cloud Forest Depend on Occurrence of Long-Range Transported African Dust?

  • Johanna K. Spiegel
  • Nina Buchmann
  • Olga L. Mayol-Bracero
  • Luis A. Cuadra-Rodriguez
  • Carlos J. Valle Díaz
  • Kimberly A. Prather
  • Stephan Mertes
  • Werner EugsterEmail author


We investigated cloud properties of warm clouds in a tropical montane cloud forest at Pico del Este (1,051 m a.s.l.) in the northeastern part of Puerto Rico to address the question of whether cloud properties in the Caribbean could potentially be affected by African dust transported across the Atlantic Ocean. We analyzed data collected during 12 days in July 2011. Cloud droplet size spectra were measured using the FM-100 fog droplet spectrometer that measured droplet size distributions in the range from 2 to 49 µm, primarily during fog events. The droplet size spectra revealed a bimodal structure, with the first peak (D < 6 µm) being more pronounced in terms of droplet number concentrations, whereas the second peak (10 µm < D < 20 µm) was found to be the one relevant for total liquid water content (LWC) of the cloud. We identified three major clusters of characteristic droplet size spectra by means of hierarchical clustering. All clusters differed significantly from each other in droplet number concentration (\(N_{\rm tot}\)), effective diameter (ED), and median volume diameter (MVD). For the cluster comprising the largest droplets and the lowest droplet number concentrations, we found evidence of inhomogeneous mixing in the cloud. Contrastingly, the other two clusters revealed microphysical behavior, which could be expected under homogeneous mixing conditions. For those conditions, an increase in cloud condensation nuclei—e.g., from processed African dust transported to the site—is supposed to lead to an increased droplet concentration. In fact, one of these two clusters showed a clear shift of cloud droplet size spectra towards smaller droplet diameters. Since this cluster occurred during periods with strong evidence for the presence of long-range transported African dust, we hypothesize a link between the observed dust episodes and cloud characteristics in the Caribbean at our site, which is similar to the anthropogenic aerosol indirect effect.


Caribbean trade wind cumulus fog Saharan dust aerosol indirect effect tropical montane cloud forest Caribbean 



The authors acknowledge the support received from Felix Zürcher, Instrument Specialist at the Atmospheric Chemistry Lab at the University of Puerto Rico, during preparation and field campaign, and from Gary Granger, Droplet Measurement Technologies, Boulder, USA, for more than one emergency repair of the fog droplet spectrometer. O. L. M.-B. acknowledges funds received from the US National Science Foundation, grant AGS #0936879. L. A. C. R. and K. A. P. acknowledge funds received from the US National Science Foundation under Grant AGS-1118735. S. M. acknowledges funding received from the German Research Foundation Grant ME 3534/1-2.


  1. Allan, J.D., Baumgardner, D., Raga, G.B., Mayol-Bracero, O.L., Morales-García, F., Garcia-Garcia, F., Montero-Martinez, G., Borrmann, S., Schneider, J., Mertes, S., Walter, S., Gysel, M., Dusek, U., Frank, G., Krämer, M. (2008) Clouds and aerosols in Puerto Rico—A new evaluation. Atmos. Chem. Phys. 8, 1293–1309.Google Scholar
  2. Andreae, M.O., Rosenfeld, D., Artaxo, P., Costa, A.A., Frank, G.P., Longo, K.M., Silva-Dias, M.A.F. (2004) Smoking rain clouds over the Amazon. Science 303(5662), 1337–1342, doi: 10.1126/science.1092779.Google Scholar
  3. Ansmann, A., Mattis, I., Müller, D., Wandinger, U., Radlach, M., Althausen, D., Damoah, R. (2005), Ice formation in Saharan dust over central Europe observed with temperature/humidity/aerosol Raman lidar. J. Geophys. Res. 110, D18S12, doi: 10.1029/2004JD005000.
  4. Baede, A. (2007) Glossary. In: Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M.M.B., Miller Jr., H.L., Chen, Z. (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, vol 463, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, Annex I, pp 941–954, doi: 10.1038/463730a.
  5. Baynton, H. (1969) Ecology of an elfin forest in Puerto Rico 3. Hilltop and forest influences on microclimate of Pico del Este. J. Arnold Arboretum 50(1), 80–92.Google Scholar
  6. Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S.K., Sherwood, S., Stevens, B., Zhang, X.Y. (2013) Clouds and Aerosols, IPCC AR5, Chapter 7.Google Scholar
  7. Bristow, C.S., Hudson-Edwards, K.A., Chappell, A. (2010), Fertilizing the Amazon and equatorial Atlantic with West African dust. Geophys. Res. Lett. 37(14), L14,807, doi: 10.1029/2010GL043486.
  8. Brown, S., Lugo, A., Silander, S., Liegel, L. (1983) Research History and Opportunities in the Luquillo Experimental Forest. Tech. rep., Gen. Tech. Rep. SO-44. U.S. Dept of Agriculture, Forest Service, Southern Forest Experiment Station., New Orleans, LA, USA.Google Scholar
  9. Bruijnzeel, L.A., Scatena, F.N., Hamilton, L.S. (eds) (2010) Tropical Montane Cloud Forests: Science for Conservation and Management. Cambridge University Press, 740 pp.Google Scholar
  10. Burkard, R., Eugster, W., Wrzesinsky, T., Klemm, O. (2002) Vertical divergence of fogwater fluxes above a spruce forest. Atmos. Res. 64(1–4), 133–145, doi: 10.1016/S0169-8095(02)00086-8.CrossRefGoogle Scholar
  11. Chou, C., Formenti, P., Maille, M., Ausset, P., Helas, G., Harrison, M., Osborne, S. (2008), Size distribution, shape, and composition of mineral dust aerosols collected during the African Monsoon Multidisciplinary Analysis Special Observation Period 0: Dust and Biomass-Burning Experiment field campaign in Niger, January 2006. J. Geophys. Res. 113, D00C10, doi: 10.1029/2008JD009897.
  12. Colarco, P.R., Toon, O., Reid, J.S., Livingston, J.M., Russell, P.B., Redemann, J., Schmid, B., Maring, H., Savoie, D., Welton, E., Campbell, J., Holben, B., Levy, R. (2003), Saharan dust transport to the Caribbean during PRIDE: 2. Transport, vertical profiles, and deposition in simulations of in situ and remote sensing observations. J. Geophys. Res. 108(D19), 8590, doi: 10.1029/2002JD002659.
  13. Coz, E., Gómez-Moreno, F.J., Casuccio, G.S., Artíñano, B. (2010) Variations on morphology and elemental composition of mineral dust particles from local, regional, and long-range transport meteorological scenarios. J. Geophys. Res. 115, D12,204, doi: 10.1029/2009JD012796.
  14. Devenish, B.J., Bartello, P., Brenguier, J.L., Collins, L.R., Grabowski, W.W., IJzermans, R.H.A., Malinowski, S.P., Reeks, M.W., Vassilicos, J.C., Wang, L.P., Warhaft, Z. (2012) Droplet growth in warm turbulent clouds. Quart. J. Roy. Meteor. Soc. 138, 1401–1429, doi: 10.1002/qj.1897.
  15. Eugster, W., Burkard, R., Holwerda, F., Scatena, F., Bruijnzeel, L. (2006) Characteristics of fog and fogwater fluxes in a Puerto Rican elfin cloud forest. Agr. Forest. Meteorol. 139(3–4), 288–306, doi: 10.1016/j.agrformet.2006.07.008.
  16. Field, P.R., Möhler, O., Connolly, P., Krämer, M., Cotton, R., Heymsfield, A.J., Saathoff, H., Schnaiter, M. (2006) Some ice nucleation characteristics of Asian and Saharan desert dust. Atmos. Chem. Phys. 6, 2991–3006, doi: 10.5194/acp-6-2991-2006.
  17. Formenti, P., Rajot, J.L., Desboeufs, K., Caquineau, S., Chevaillier, S., Nava, S., Gaudichet, A., Journet, E., Triquet, S., Alfaro, S., Chiari, M., Haywood, J., Coe, H., Highwood, E. (2008), Regional variability of the composition of mineral dust from western Africa: Results from the AMMA SOP0/DABEX and DODO field campaigns. J. Geophys. Res. 113, D00C13, doi: 10.1029/2008JD009903.
  18. Garcia-Martino, A.R., Warner, G.S., Scatena, F.N., Civco, D.L. (1996) Rainfall, runoff and elevation relationships in the Luquillo mountains of Puerto Rico. Caribb. J. Sci. 32(4), 413–423.Google Scholar
  19. Gard, E., Mayer, J.E., Morrical, B.D., Dienes, T., Fergenson, D.P., Prather, K.A. (1997) Real-Time Analysis of Individual Atmospheric Aerosol Particles: Design and Performance of a Portable ATOFMS. Anal. Chem. 69(20), 4083–4091, doi: 10.1021/ac970540n.
  20. Gibson, E.R., Hudson, P.K., Grassian, V.H. (2006), Physicochemical properties of nitrate aerosols: implications for the atmosphere. J. Phys. Chem. A 110(42), 11,785–11,799, doi: 10.1021/jp063821k.
  21. Gioda, A., Mayol-Bracero, O.L., Morales-García, F., Collett, J., Decesari, S., Emblico, L., Facchini, M.C., Morales-De Jesús, R.J., Mertes, S., Borrmann, S., Walter, S., Schneider, J. (2008) Chemical Composition of Cloud Water in the Puerto Rican Tropical Trade Wind Cumuli. Water Air Soil Poll. 200(1–4), 3–14, doi: 10.1007/s11270-008-9888-4.
  22. Gioda, A., Mayol-Bracero, O.L., Scatena, F.N., Weathers, K.C., Mateus, V.L., McDowell, W.H. (2013) Chemical constituents in clouds and rainwater in the puerto rican rainforest: Potential sources and seasonal drivers. Atmos. Environ. 68, 208–220.Google Scholar
  23. Goudie, A., Middleton, N. (2001) Saharan dust storms: nature and consequences. Earth-Sci. Rev. 56(1–4), 179–204, doi: 10.1016/S0012-8252(01)00067-8.
  24. Gultepe, I. (2008) Measurements of light rain, drizzle and heavy fog. In: Michaelides, S. (ed) Precipitation: Advances in measurement, estimation and prediction, Springer, pp 59–82.Google Scholar
  25. Gultepe, I., Isaac, G.A. (1999) Scale effects on averaging of cloud droplet and aerosol number concentrations: Observations and models. Journal of Climate 12, 1268–1279.Google Scholar
  26. Gustafsson, R.J., Orlov, A., Badger, C.L., Griffiths, P.T., Cox, R.A., Lambert, R.M. (2005) A comprehensive evaluation of water uptake on atmospherically relevant mineral surfaces: DRIFT spectroscopy, thermogravimetric analysis and aerosol growth measurements. Atmos. Chem. Phys. 5, 3415–3421, doi: 10.5194/acp-5-3415-2005.
  27. Gyan, K., Henry, W., Lacaille, S., Laloo, A., Lamsee-Ebanks, C., McKay, S., Antoine, R.M., Monteil, M.A. (2005) African dust clouds are associated with increased paediatric asthma accident and emergency admissions on the Caribbean island of Trinidad. Int. J. Biometeorol. 49(6), 371–376, doi: 10.1007/s00484-005-0257-3.CrossRefGoogle Scholar
  28. Hartmann, D.L., Tank, A.M.K., Rusticucci, M., Alexander, L., Broennimann, S., Charabi, Y.A.R., Dentener, F., Dlugokencky, E., Easterling, D., Kaplan, A., Soden, B., Thorne, P., Wild, M., Zhai, P. (2013) Observations: Atmosphere and Surface, IPCC AR5, Chapter 2.Google Scholar
  29. Herich, H., Tritscher, T., Wiacek, A., Gysel, M., Weingartner, E., Lohmann, U., Baltensperger, U., Cziczo, D.J. (2009) Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions. Phys. Chem. Chem. Phys. 11(36), 7759, doi: 10.1039/b916865f.
  30. Holwerda, F. (2005) Water and energy budgets of rain forests along an elevation gradient under maritime tropical conditions. Ph.D. thesis, Vrije Universiteit, Amsterdam, 167 pp.Google Scholar
  31. Holwerda, F., Burkard, R., Eugster, W., Scatena, F.N., Meesters, A.G.C., Bruijnzeel, L.A. (2006) Estimating fog deposition at a Puerto Rican elfin cloud forest site: comparison of the water budget and eddy covariance methods. Hydrol. Process. 20(13), 2669–2692, doi: 10.1002/hyp.6065.
  32. Huang, J., Zhang, C., Prospero, J.M. (2010) African dust outbreaks: A satellite perspective of temporal and spatial variability over the tropical Atlantic Ocean. J. Geophys. Res. 115, D05202, doi: 10.1029/2009JD012516.
  33. Kandler, K., Schütz, L., Deutscher, C., Ebert, M., Hofmann, H., Jäckel, S., Jaenicke, R., Knippertz, P., Lieke, K., Massling, A., Petzold, A., Schladitz, A., Weinzierl, B., Wiedensohler, A., Zorn, S., Weinbruch, S. (2009) Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006. Tellus B 61(1), 32–50, doi: 10.1111/j.1600-0889.2008.00385.x.
  34. Kanji, Z.A., Abbatt, J.P.D. (2006) Laboratory studies of ice formation via deposition mode nucleation onto mineral dust and n-hexane soot samples. J. Geophys. Res. 111, D16204, doi: 10.1029/2005JD006766.
  35. Kaufman, Y.J., Tanré, D., Boucher, O. (2002) A satellite view of aerosols in the climate system. Nature 419, 215–223.Google Scholar
  36. Kelly, J., Chuang, C., Wexler, A. (2007) Influence of dust composition on cloud droplet formation. Atmos. Environ. 41(14), 2904–2916, doi: 10.1016/j.atmosenv.2006.12.008.
  37. Laskin, A., Iedema, M.J., Ichkovich, A., Graber, E.R., Taraniuk, I., Rudich, Y. (2005) Direct observation of completely processed calcium carbonate dust particles. Faraday Discuss. 130, 453, doi: 10.1039/b417366j.
  38. Legendre, P., Legendre, L. (1998) Numerical Ecology, 2nd edn. No. 20 in Developments in Environmental Modeling, Elsevier, Amsterdam, 853 pp.Google Scholar
  39. Levin, Z., Ganor, E., Gladstein, V. (1996) The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean. J. Appl. Meteor. 35(9), 1511–1523, doi: 10.1175/1520-0450(1996).
  40. Levin, Z., Teller, A., Ganor, E., Yin, Y. (2005) On the interactions of mineral dust, sea-salt particles, and clouds: A measurement and modeling study from the Mediterranean Israeli Dust Experiment campaign. J. Geophys. Res. 110, D20202, doi: 10.1029/2005JD005810.
  41. Li, W.J., Shao, L.Y. (2009) Observation of nitrate coatings on atmospheric mineral dust particles. Atmos. Chem. Phys. 9(6), 1863–1871, doi: 10.5194/acp-9-1863-2009.
  42. Li, X., Maring, H., Savoie, D., Voss, K., Prospero, J.M. (1996) Dominance of mineral dust in aerosol light-scattering in the North Atlantic trade winds. Nature 380, 416–419.Google Scholar
  43. Lüönd, F., Stetzer, O., Welti, A., Lohmann, U. (2010) Experimental study on the ice nucleation ability of size-selected kaolinite particles in the immersion mode. J. Geophys. Res. 115, D14,201, doi: 10.1029/2009JD012959.
  44. Maring, H., Savioe, D., Izaguirre, M., Custals, L., Reid, J.S. (2003) Vertical distributions of dust and sea-salt aerosols over Puerto Rico during PRIDE measured from a light aircraft. J. Geophys. Res. 108(D19), 8587, doi: 10.1029/2002JD002544.
  45. Matsuki, A., Schwarzenboeck, A., Venzac, H., Laj, P., Crumeyrolle, S., Gomes, L. (2010) Cloud processing of mineral dust: direct comparison of cloud residual and clear sky particles during AMMA aircraft campaign in summer 2006. Atmos. Chem. Phys. 10(3), 1057–1069, doi: 10.5194/acp-10-1057-2010.
  46. Muhs, D., Bush, C., Stewart, K., Rowland, T., Crittenden, R. (1990) Geochemical evidence of Saharan dust parent material for soils developed on Quaternary limestones of Caribbean and western Atlantic islands. Quaternary Res. 33(2), 157–177, doi: 10.1016/0033-5894(90)90016-E.Google Scholar
  47. Novakov, T., Rivera-Carpio, C., Penner, J., Rogers, C. (1994) The effect of anthropogenic sulfate aerosols on marine cloud droplet concentrations. Tellus B 46(2), 132–141.Google Scholar
  48. Prospero, J.M., Lamb, P.J. (2003) African droughts and dust transport to the Caribbean: climate change implications. Science 302(5647), 1024–1027, doi: 10.1126/science.1089915.Google Scholar
  49. Prospero, J.M., Mayol-Bracero, O.L. (2013) Understanding the transport and impact of african dust on the caribbean basin. Bull. Amer. Meteorol. Soc. 94, 1329–1337, doi: 10.1175/BAMS-D-12-00142.1.
  50. Prospero, J.M., Nees, R.T. (1986) Impact of the North Afrcian drought and El Nino on mineral dust in the Barbados trade winds. Nature 320, 735–738.Google Scholar
  51. Prospero, J.M., Landing, W.M., Schulz, M. (2010) African dust deposition to Florida: Temporal and spatial variability and comparisons to models. J. Geophys. Res. 115, D13304, doi: 10.1029/2009JD012773.
  52. Rosenfeld, D., Rudich, Y., Lahav, R. (2001) Desert dust suppressing precipitation: a possible desertification feedback loop. Proc. Natl. Acad. Sci. USA. 98(11), 5975–5980, doi: 10.1073/pnas.101122798.
  53. Rosenfeld, D., Lohmann, U., Raga, G.B., O’Dowd, C.D., Kulmala, M., Fuzzi, S., Reissell, A., Andreae, M.O. (2008) Flood or drought: how do aerosols affect precipitation? Science 321(5894), 1309–1313, doi: 10.1126/science.1160606.CrossRefGoogle Scholar
  54. Shi, Y., Zhang, J., Reid, J.S., Holben, B., Hyer, E.J., Curtis, C. (2011) An analysis of the collection 5 MODIS over-ocean aerosol optical depth product for its implication in aerosol assimilation. Atmos. Chem. Phys. 11(2), 557–565, doi: 10.5194/acp-11-557-2011.
  55. Shinn, E.A., Smith, G.W., Prospero, J.M., Betzer, P., Hayes, M.L., Garrison, V., Barber, R.T. (2000) African dust and the demise of Caribbean coral reefs. Geophys. Res. Lett. 27(19), 3029–3032, doi: 10.1038/252093f0.Google Scholar
  56. Spiegel, J.K., Zieger, P., Bukowiecki, N., Hammer, E., Weingartner, E., Eugster, W. (2012) Evaluating the capabilities and uncertainties of droplet measurements for the fog droplet spectrometer (FM-100). Atmos. Meas. Tech. 5, 2237–2260, doi: 10.5194/amt-5-2237-2012.
  57. Sullivan, R.C., Moore, M.J.K., Petters, M.D., Kreidenweis, S.M., Roberts, G.C., Prather, K.A. (2009) Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles. Atmos. Chem. Phys. 9, 3303–3316, doi: 10.5194/acp-9-3303-2009.
  58. Takahama, S., Liu, S., Russell, L.M. (2010) Coatings and clusters of carboxylic acids in carbon-containing atmospheric particles from spectromicroscopy and their implications for cloud-nucleating and optical properties. J. Geophys. Res. 115, D01202, doi: 10.1029/2009JD012622.
  59. Tanner, E., Kapos, V., Franco, W. (1992) Nitrogen and phosphorus fertilization effects on Venezuelan montane forest trunk growth and litterfall. Ecology 73(1), 78–86.Google Scholar
  60. Twomey, S. (1977) The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 34(7), 1149–1152.Google Scholar
  61. Warner, J. (1969) The microstructure of cumulus cloud. Part I. General features of the droplet spectrum. Journal of Atmospheric Sciences 26, 1049–1059.Google Scholar
  62. Wilks, D. (2006) Statistical Methods in Atmospheric Schiences, 2nd edn. Academic Press, San Diego.Google Scholar
  63. Zhang, J., Reid, J.S. (2006), MODIS aerosol product analysis for data assimilation: Assessment of over-ocean level 2 aerosol optical thickness retrievals. J. Geophys. Res. 111(D22), D22207, doi: 10.1029/2005JD006898.

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Johanna K. Spiegel
    • 1
  • Nina Buchmann
    • 1
  • Olga L. Mayol-Bracero
    • 2
  • Luis A. Cuadra-Rodriguez
    • 3
  • Carlos J. Valle Díaz
    • 2
    • 4
  • Kimberly A. Prather
    • 5
  • Stephan Mertes
    • 6
  • Werner Eugster
    • 1
    Email author
  1. 1.Institute of Agricultural SciencesETH ZürichSwitzerland
  2. 2.Institute for Tropical Ecosystem StudiesUniversity of Puerto RicoSan JuanPuerto Rico
  3. 3.Department of ChemistryUniversity of California, San DiegoLa JollaUSA
  4. 4.Department of Graduate ChemistryUniversity of Puerto RicoSan JuanPuerto Rico
  5. 5.Department of Chemistry and Biochemistry and Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaUSA
  6. 6.Leibniz Institute for Tropospheric ResearchLeipzigGermany

Personalised recommendations