Pure and Applied Geophysics

, Volume 171, Issue 12, pp 3365–3384 | Cite as

Waves and Currents in Hawaiian Waters Induced by the Dispersive 2011 Tohoku Tsunami

  • Hongqiang ZhouEmail author
  • Yong Wei
  • Lindsey Wright
  • Vasily V. Titov


This study focuses on the effects of frequency dispersion on tsunami-induced coastal water waves and currents, exemplified by the 2011 Tohoku tsunami event. The investigation relies on numerical simulations. We start from a tsunami source constrained through the inversion algorithm of NOAA’s tsunami inundation forecast system. The trans-Pacific propagation and the hydrodynamic processes in the Hawaiian Islands region are simulated with a weakly dispersive Boussinesq model and a shallow-water model that neglects dispersion effects. From these modeling results, boundary conditions are derived to force the high-resolution simulations in the coastal waters in the Hawaiian Islands region through MOST, a tsunami simulating code based on the shallow-water theory. We note that the dispersion effects generally lower the amplitudes of leading waves. Trailing waves of short wavelengths and high amplitudes can develop in coastal waters. A model neglecting dispersion effects could under-predict the wave heights and current speeds at the trailing waves.


Water waves Currents Coastal waters Dispersion 2011 Tohoku tsunami 



This study is partially funded by the Joint Institute for the Study of the Atmosphere and Ocean, Contribution No. 2171, the Pacific Marine Environmental Laboratory, Contribution No. 4046, under NOAA Cooperative Agreement No. NA10OAR4320148, and the US Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research under Interagency Agreement RES-07-004 Project N6401. We thank G. Mungov at the National Geophysical Data Center for the wave data at DART stations, P. Burke at NOS for the current data at the NOS ADCP stations, and E. Pawlak at the University of California, San Diego for the wave and current data at the Kilo Nalu station. We are grateful to R. Anooshehpoor at NRC, A. Rabinovich at the Russian Academy of Sciences and Institute of Ocean Sciences of Canada, and two anonymous reviewers for helpful revision advice. This report was prepared as an account of work sponsored by an agency of the US Government. Neither the US Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party’s use, or the results of such use, of any information, apparatus, product, or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. The views expressed in this paper are not necessarily those of the US Nuclear Regulatory Commission.


  1. Borrero, J.C., Bell, R., Csato, C., DeLange, W., Goring, D., Greer, S.D., Pickett, V., and Power, W. (2013). Observations, effects and real time assessment of the March 11, 2011 Tohoku-oki tsunami in New Zealand, Pure Appl. Geophys., 170, 1229–1248, doi: 10.1007/s00024-012-0492-6.
  2. Burwell, D., Tolkova, E., and Chawla, A. (2007). Diffusion and dispersion characterization of a numerical tsunami model, Ocean Modell., 19, 10–30.Google Scholar
  3. Emery, W.J., and Thomson, R.E. (1998). Data Analysis Methods in Physical Oceanography, first edition, Elsevier, New York, NY.Google Scholar
  4. Gica, E., Spillane, M., Titov, V.V., Chamberlin, C., and Newman, J.C. (2008). Development of the forecast propagation database for NOAA’s Short-term Inundation Forecast for Tsunamis (SIFT), NOAA Tech. Memo. OAR PMEL-139, 89 pp.Google Scholar
  5. Glimsdal, S., Pedersen, G.K., Harbitz, C.B., and Løvholt, F. (2013). Dispersion of the tsunamis: does it really matter?, Nat. Hazards Earth Syst. Sci., 13, 1507–1526, doi: 10.5194/nhess-13-1507-2013.
  6. Grilli, S.T., Ioualalen, M., Asavanant, J., Shi, F., Kirby, J.T., and Watts, P. (2007). Source constraints and model simulation of the December 26, 2004, Indian Ocean tsunami, J. Waterwy. Port, Coastal Ocean Eng., 133, 414–428.Google Scholar
  7. Grilli, S.T., Dubosq, S., Pophet, N., Pérignon, Y., Kirby, J.T., and Shi, F. (2010). Numerical simulation and first-order hazard analysis of large co-seismic tsunamis generated in the Puerto Rico trench: Near-field impact on the North shore of Puerto Rico and far-field impact on the US East Coast, Nat. Hazards Earth Syst. Sci., 10, 2109–2125, doi: 10.5194/nhess-10-2109-2010.
  8. Grilli, S.T., Harris, J.C., Tajalli Bakhsh, T.S., Masterlark, T.L., Kyriakopoulos, C., Kirby, J.T., and Shi, F. (2013). Numerical simulation of the 2011 Tohoku tsunami based on a new transient FEM co-seismic source: Comparison to far- and near-field observations, Pure Appl. Geophys., 170, 1333–1359, doi: 10.1007/s00024-012-0528-y.
  9. Hammack, J.L. (1973). A note on tsunamis: Their generation and propagation in an ocean of uniform depth, J. Fluid Mech., 60(4), 769–799.Google Scholar
  10. Holton, J.R. (1992). An Introduction to Dynamic Meteorology, Third Edition, Academic Press, San Diego, CA.Google Scholar
  11. Horillo, J., Kowalik, Z., and Shigihara, Y. (2006). Wave dispersion study in the Indian Ocean tsunami of December 26, 2004, Marine Geodesy, 29, 149–166.Google Scholar
  12. Ioualalen, M., Asavanant, J., Kaewbanjak, N., Grilli, S.T., Kirby, J.T., and Watts, P. (2007). Modeling the 26 December 2004 Indian Ocean tsunami: Case study of impact in Thailand, J. Geophys. Res., 112, C07024, doi: 10.1029/2006JC003850.
  13. Kânoglu, U., and Synolakis, C.E. (2006). Initial value problem solution of nonlinear shallow water wave equations, Phys. Rev. Lett., 97(14), 148501, doi: 10.1103/PhysRevLett.97.148501.
  14. Kirby, J.T., Wei, G., Chen, Q., Kennedy, A.B., and Dalrymple, R.A. (1998). FUNWAVE 1.0 Fully Nonlinear Boussinesq Wave Model. Documentation and User’s Manual, Research Report No. CACR-98-06, Center for Applied Coastal Research, Department of Civil Engineering, University of Delaware, 70 pp.Google Scholar
  15. Kirby, J.T., Shi, F., Tehranirad, B., Harris, J.C., and Grilli, S.T. (2013). Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis effects, Ocean Modell., 62, 30–55.Google Scholar
  16. Løvholt, F., Pedersen, G., and Gisler, G. (2008). Oceanic propagation of a potential tsunami from the La Palma Island, J. Geophys. Res., 113, C09026, doi: 10.1029/2007JC004603.
  17. Løvholt, F., Perdersen, G., and Glimsdal, S. (2010). Coupling of dispersive tsunami propagation and shallow water coastal response, in Proceedings of the “First Caribbean Waves workshop in Guadeloupe”, Dec. 2008, The Open Oceanography Journal, 4, edited by: Zahibo, N., Pelinovsky, E., Yalçiner, A., and Titov, V., 71–82.Google Scholar
  18. Løvholt, F., Kaiser, G., Glimsdal, S., Scheele, L., Harbitz, C.B., and Pedersen, G. (2012). Modeling propagation and inundation of the 11 March 2011 Tohoku tsunami, Nat. Hazards Earth Syst. Sci., 12, doi: 10.5194/nhess-12-1017-2012.
  19. Lynett, P., and Liu, P.L.-F. (2002). A numerical study of submarine-landslide-generated waves and run-up, Proc. R. Soc. Lond. A, 458, 2885–2910.Google Scholar
  20. Lynett, P., Borrero, J.C., Weiss, R., Son, S., Greer, D., and Renteria, W. (2012). Observations and modeling of tsunami-induced currents in ports and harbors, Earth Planet. Sci. Lett., 327-328, 68–74, doi: 10.1016/j.epsl.2012.02.002.
  21. Nwogu, O. (1993). Alternative form of Boussinesq equations for nearshore wave propagation, J. Waterwy. Port Coastal Ocean Eng., 119, 618–638.Google Scholar
  22. Pawlak, G., De Carlo, E., Fram, J., Hebert, A., Jones, C., McLaughlin, B., McManus, M., Millikan, K., Sansone, F., Stanton, T., and Wells, J. (2009). Development, deployment, and operation of Kilo Nalu Nearshore Cabled Observatory, IEEE OCEANS 2009 Conference, Bremen, Germany.Google Scholar
  23. Percival, D.B., Denbo, D.W., Eble, M.C., Gica, E., Mofjeld, H.O., Spillane, M.C., Tang, L., and Titov, V.V. (2011). Extraction of tsunami source coefficients via inversion of DART \(\textregistered\) buoy data, Nat. Hazards, 58(1), doi: 10.1007/s11069-010-9688-1, 567–590.
  24. Rabinovich, A.B. (1997). Spectral analysis of tsunami waves: Separation of source and topography effects, J. Geophys. Res., 102(C6), 12663–12676.Google Scholar
  25. Rabinovich, A.B. (2009). Seiches and harbour oscillations. In: Handbook of Coastal and Ocean Engineering (ed. Y.C. Kim), World Scientific, Singapore, 193–236.Google Scholar
  26. Rabinovich, A.B., Candella, R.N., and Thomson, R.E. (2013). The open ocean energy decay of three recent trans-Pacific tsunamis, Geophys. Res. Lett., 40, doi: 10.1002/grl.50625.
  27. Roeber, V., Cheung, K.F., Kobayashi, M.H. (2010). Shock-capturing Boussinesq-type model for nearshore wave processes, Coastal Eng., 57, 407–423, doi: 10.1016/j.coastaleng.2009.11.007.
  28. Shi, F., Dalrymple, R.A., Kirby, J.T., Chen, Q., and Kennedy, A. (2001). A fully nonlinear Boussinesq model in generalized curvilinear coordinates, Coastal Eng., 42, 337–358.Google Scholar
  29. Sitanggang, K. and Lynett, P. (2005). Parallel computation of a highly nonlinear Boussinesq equation model through domain decomposition. Int. J. Numer. Methods Fluids, 49, 57–74.Google Scholar
  30. Tang, L., Titov, V.V., Wei, Y., Mofjeld, H.O., Spillane, M., Arcas, D., Bernard, E.N., Chamberlin, C.D., Gica, E., and Newman, J. (2008). Tsunami forecast analysis for the May 2006 Tonga tsunami, J. Geophys. Res., 113, C12015, doi: 10.1029/2008JC004922.
  31. Tang L., Titov, V.V., and Chamberlin, C.D. (2009). Development, testing, and applications of site-specific tsunami inundation models for real-time forecasting, J. Geophys. Res., 114, C12025, doi: 10.1029/2009JC005476.
  32. Tang, L., Titov, V.V., Bernard, E.N., Wei, Y., Chamberlin, C.D., Newman, J.C., Mofjeld, H.O., Arcas, D., Eble, M.C., Moore, C., Uslu, B., Pells, C., Spillane, M., Wright, L., and Gica, E. (2012). Direct energy estimation of the 2011 Japan tsunami using deep-ocean pressure measurements, J. Geophys. Res., 117, C08008, doi: 10.1029/2011JC007635.
  33. Titov, V.V., and Synolakis, C.E. (1995). Modeling of breaking and nonbreaking long-wave evolution and runup using VTCS-2, J. Waterwy. Port Coast. Ocean Eng., 121(6), 308–316.Google Scholar
  34. Titov, V. V. and González, F.I. (1997). Implementation and testing of the Method of Splitting Tsunami (MOST) model, NOAA Tech. Memo. ERL PMEL-112 (PB98-122773), NOAA/Pacific Marine Environmental Laboratory, Seattle, WA.Google Scholar
  35. Titov, V.V., and Synolakis, C.E. (1998). Numerical modeling of tidal wave runup, J. Waterwy. Port Coast. Ocean Eng., 124(4), 157–171.Google Scholar
  36. Wei, G., and Kirby, J.T. (1995). A time-dependent numerical code for extended Boussinesq equations, J. Waterwy. Port Coastal Ocean Eng., 120, 251–261.Google Scholar
  37. Wei, Y., Bernard, E.N., Tang, L., Weiss, R., Titov, V.V., Moore, C., Spillane, M., Hopkins, M., and Kânoglu, U. (2008). Real-time experimental forecast of the Peruvian tsunami of August 2007 for U.S. coastlines, Geophys. Res. Lett., 35, L04609, doi: 10.1029/2007GL032250.
  38. Wei, Y., Chamberlin, C., Titov, V.V., Tang, L., and Bernard, E. N. (2013). Modeling of the 2011 Japan tsunami: Lessons for near-field forecast, Pure Appl. Geophys., 170(6-8), doi: 10.1007/s00024-012-0519-z, 1309–1331.
  39. Wilson, R.I., Admire, A.R., Borrero, J.C., Dengler, L.A., Legg, M.R., Lynett, P., McCrink, T.P., Miller, K.M., Ritchie, A., Sterling, K., and Whitmore, P.M. (2013). Observations and impacts from the 2010 Chilean and 2011 Japanese Tsunamis in California (USA), Pure Appl. Geophys., 170, 1127–1147, doi: 10.1007/s00024-012-0527-z.
  40. Yamazaki, Y., Cheung, K.F, Pawlak, G., and Lay, T. (2012). Surges along the Honolulu coast from the 2011 Tohoku tsunami, Geophy. Res. Lett., 39, L09604, doi: 10.1029/2012GL051624.
  41. Zhou, H., Moore, C.W., Wei, Y., and Titov, V.V. (2011). A nested-grid Boussinesq-type approach to modelling dispersive propagation and runup of landslide-generated tsunamis, Nat. Hazards Earth Syst. Sci., 11, 2677–2697, doi: 10.5194/nhess-11-2677-2011.
  42. Zhou, H., Wei, Y., and Titov, V.V. (2012). Dispersive modeling of the 2009 Samoa tsunami, Geophy. Res. Lett., 39, L16603, doi: 10.1029/2012GL053068.

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Hongqiang Zhou
    • 1
    • 2
    Email author
  • Yong Wei
    • 1
    • 2
  • Lindsey Wright
    • 1
    • 2
  • Vasily V. Titov
    • 1
  1. 1.Pacific Marine Environmental LaboratoryNational Oceanic and Atmospheric AdministrationSeattleUSA
  2. 2.Joint Institute for the Study of the Atmosphere and OceanUniversity of WashingtonSeattleUSA

Personalised recommendations