Pure and Applied Geophysics

, Volume 171, Issue 12, pp 3281–3305 | Cite as

Tsunami Forecast by Joint Inversion of Real-Time Tsunami Waveforms and Seismic or GPS Data: Application to the Tohoku 2011 Tsunami

  • Yong WeiEmail author
  • Andrew V. Newman
  • Gavin P. Hayes
  • Vasily V. Titov
  • Liujuan Tang


Correctly characterizing tsunami source generation is the most critical component of modern tsunami forecasting. Although difficult to quantify directly, a tsunami source can be modeled via different methods using a variety of measurements from deep-ocean tsunameters, seismometers, GPS, and other advanced instruments, some of which in or near real time. Here we assess the performance of different source models for the destructive 11 March 2011 Japan tsunami using model–data comparison for the generation, propagation, and inundation in the near field of Japan. This comparative study of tsunami source models addresses the advantages and limitations of different real-time measurements with potential use in early tsunami warning in the near and far field. The study highlights the critical role of deep-ocean tsunami measurements and rapid validation of the approximate tsunami source for high-quality forecasting. We show that these tsunami measurements are compatible with other real-time geodetic data, and may provide more insightful understanding of tsunami generation from earthquakes, as well as from nonseismic processes such as submarine landslide failures.


Tsunameter GPS finite-fault solution tsunami inversion tsunami forecast runup inundation modeling near field 



The authors would like to thank William Barnhart of the U.S. Geological Survey and two anonymous reviewers for their thorough reviews and constructive remarks, which helped improve this manuscript. This publication is partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA cooperative agreement NA100AR4320148; JISAO contribution 2137; PMEL contribution 4014. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.


  1. Arcas, D., and Titov, V. (2006). Sumatra tsunami: Lessons from modeling, Surv. Geophys., 27(6), doi: 10.1007/s10712-006-9, 679–705.
  2. Bird, P. (2003). An updated digital model of plate boundaries, Geochem. Geophys. Geosys., 4(3), 1027, doi: 10.1029/2001GC000252.
  3. Bassin, C., Laske, G. and Masters, G., (2000). The current limits of resolution for surface wave tomography in North America, EOS Trans. AGU, 81, Fall Meet. Suppl., Abstract S12A-03.Google Scholar
  4. Bernard, E.N., Tang, L., Wei, Y., and Titov, V.V. (2013). Impact of near-field, deep-ocean tsunami observations on forecasting the December 7, 2012 Japanese tsunami, submitted to this issue, in press (this issue), doi: 10.1007/s00024-013-0720-8.
  5. Blaser, L., Kru¨uger, F., Ohrnberger, M. and Scherbaum, F., (2010). Scaling relations of earthquake source parameter estimates with special focus on subduction environment, Bull. Seismol. Soc. Am., 100, 2914–2926.Google Scholar
  6. Blewitt, G., Kreemer, C., Hammond, W.C., Plag, H.P., Stein, S. and Okal, E. (2006). Rapid determination of earthquake magnitude using GPS for tsunami warning system, Geophys. Res. Lett., 33, L11309, doi: 10.1029/2006GL026145.
  7. Borrero, J., Bell, R., Csato, C., DeLange, W., Greer, D., Goring, D., Pickett, V. and Power, W. (2013). Observations, effects and real time assessment of the March 11, 2011 Tohoku-oki tsunami in New Zealand, Pure Appl. Geophys., 170, 1229–1248, doi: 10.1007/s00024-012-0492-6.
  8. Burwell, D., Tolkova, E. and Chawla, A. (2007). Diffusion and dispersion characterization of a numerical tsunami model. Ocean Model., 19(1–2), 10–30.Google Scholar
  9. Chen, T., Newman, A.V., Feng, L., Fritz, H.M. (2009). Slip distribution from the 1 April 2007 Solomon Islands earthquake: a unique image of near-trench rupture, Geophys. Res. Lett., 36, L16307, doi: 10.1029/2009GL039496.
  10. Crowell, B. Bock, W.Y., Melgar, D. (2012). Real-time inversion of GPS data for finite fault modeling and rapid hazard assessment, Geophys. Res. Lett., 39(9), doi: 10.1029/2012GL051318.
  11. Duputel, Z., Rivera, L., Kanamori, H., and Hayes, G. (2012). W phase source inversion for moderate to large earthquakes (1990–2010), Geophys. J. Int. 189, 1125–1147.Google Scholar
  12. Dziewonski, A,M. and Anderson, D.L., 1981. Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297–356.Google Scholar
  13. Fritz, H.M., Borrero, J.C., Synolakis C.E., Okal, E.A., Weiss, R., Titov, V.V., Jafee, B.E., Foteinis, S., Lynett, P.K., Chan, I-C., and Liu, P.L-F. (2011). Insights on the 2009 South Pacific tsunami in Samoa and Tonga from field surveys and numerical simulations, Earth-Sci. Rev., 107, 66–75.Google Scholar
  14. Gica, E., Spillane, M., Titov, V.V., Chamberlin, C. and Newman, J.C. (2008). Development of the forecast propagation database for NOAA’s Short-term Inundation Forecast for Tsunamis (SIFT), NOAA Tech. Memo. OAR PMEL-139, pp 89.Google Scholar
  15. González, F.I., Bernard, E.N., Meinig, C., Eble, M., Mofjeld, H.O., and Stalin, S. (2005). The NTHMP tsunameter network, Nat. Hazards, 35(1), Special Issue, U.S. National Tsunami Hazard Mitigation Program, 2005, 25–39.Google Scholar
  16. Government Accountability Office (2006), “U.S. Tsunami Preparedness — Federal and state partners collaborate to help communities reduce potential impacts, but significant challenges remain,” Report to Congressional Committees and Senator Dianne Feinstein, United States Government Accountability Office, pp 60.Google Scholar
  17. Grilli, S.T., Harris, J.C., Kirby, J.T., Shi, F., and Ma, G., Masterlark, T., Tappin, D.R. and Tajali-Bakhsh, T.S. (2013a). Modeling of the Tohoku-Oki 2011 tsunami generation, far-field and coastal impact: A mixed co-seismic and SMF source. In Proc. 7th Intl. Conf. on Coastal Dynamics (Arcachon, France, June 2013) (ed. P. Bonneton), 749–758, paper 068.Google Scholar
  18. Grilli, S.T., Harris, J.C., Tajalibakhsh, T., Masterlark, T.L., Kyriakopoulos, C., Kirby, J.T. and Shi, F. (2013b). Numerical simulation of the 2011 Tohoku tsunami based on a new transient FEM co-seismic source: comparison to far- and near-field observations. Pure Appl. Geophys., 170, 1333–1359.Google Scholar
  19. Gusman, A.R., Tanioka, Y., Kobayashi, T., Latief, H. and Pandow, W. (2010). Slip distribution of the 2007 Bengkulu earthquake inferred from tsunami waveforms and InSAR data, J. Geophys. Res., 115, B12316, doi: 10.1029/2010JB007565.
  20. Gusman, A.R., Tanioka, Y., Sakai, S., Tsushima, H. (2012). Source model of the great 2011 Tohoku earthquake estimated from tsunami waveforms and crustal deformation data. Earth Planet. Sci. Lett., 341–344, 234–242.Google Scholar
  21. Hayes, G.P. (2011). Rapid source characterization of the 2011 Mw 9.0 off the Pacific Coast of Tohoku earthquake, Earth Planets Space, 63, 529–534.Google Scholar
  22. Hayes, G.P., Earle, P.S., Benz, H.M., Wald, D.J., Briggs, R.W., and the USGS/NEIC Earthquake Response Team (2011). 88 Hours: The U.S. Geological Survey National Earthquake Information Center response to the 11 March 2011 Mw 9.0 Tohoku earthquake, Seis. Res. Lett. 82(4), 481–493.Google Scholar
  23. Hayes, G.P., Wald, D.J., Johnson, R.L. (2012). Slab 1.0: A three-dimensional model of global subduction zone geometries, J. Geophys. Res.: Solid Earth, 117, B01302, doi: 10.1029/2011JB008524.
  24. Hirata, K., Sataki, K., Tanioka, Y., Kuragano, T., Hasegawa, Y., Hayashi, Y., and Hamada, N. (2006). The 2004 Indian Ocean tsunami: Tsunami source model from satellite altimetry, Earth Planets Space, 58, 195–201.Google Scholar
  25. Ji, C., Wald, D.J., and Helmberger, D.V. (2002). Source description of the 1999 Hector Mine, California earthquake; part I: wavelet domain inversion theory and resolution analysis, Bull. Seismol. Soc. Am., 92(4), 1192–1207.Google Scholar
  26. Ji, C., Helmberger, D.V., Wald, D.J. and Ma, K.-F., 2003. Slip history and dynamic implications of the 1999 Chi–Chi, Taiwan, earthquake, J. Geophys. Res., 108, doi: 10.1029/2002JB001764.
  27. Kajiura, K., (1970). Tsunami source, energy and the directivity of wave radiation, Bull. Earthq. Res. Inst., Univ. Tokyo, 48, 835–869.Google Scholar
  28. Kato, T., Terada, Y., Kinoshita, M., Kakimoto, H., Isshiki, H., Matsuishi, M., Yokoyama, A., and Tanno, T. (2000). Real-time observation of tsunami by RTK-GPS, Earth Planets Space, 52, 841–845.Google Scholar
  29. Kato, T., Terada, Y., Nagai, T., Shimizu, K., Tomita, T. and Koshimura, S. (2008). Development of a new tsunami monitoring system using a GPS buoy, American Geophysical Union, Fall Meeting 2008, abstract #G43B-03.Google Scholar
  30. Langbein, J. and Bock, Y (2004). High-rate real-time GPS network at Parkfield: utility for detecting fault slip and seismic displacements, Geophys. Res. Lett., 31(15), doi: 10.1029/2003GL019408.
  31. Lovholt, F., Pederson, G. and Glimsdal, S. (2010). Coupling of dispersive tsunami propagation and shallow water coastal response. Open Oceanogr. J., 4, 71–82.Google Scholar
  32. MacInnes, B.T., Gusman, A.R., LeVeque, R.J., and Tanioka, Y. (2013). Comparison of earthquake source models for the 2011 Tohoku-oki event using tsunami simulations and near field observations. Bull. Seismol. Soc. Am., 103, no. 2B, 1256–1274, doi: 10.1785/0120120121.
  33. Ministry of Land, Infrastructure, Transport, and Tourism of Japan (2011a). Status survey reports of the East Japan Earthquake, Ministry of Land, Infrastructure, Transport, and Tourism Press Release (first report), pp 16.Google Scholar
  34. Ministry of Land, Infrastructure, Transport, and Tourism of Japan (2011b). The Great East Japan Earthquake (107th report): Outline, Ministry of Land, Infrastructure, Transport, and Tourism, pp 1.Google Scholar
  35. Mori, N., Takahashi, T., Yasuda, T.and Yanagisawa, H. (2011). Survey of 2011 Tohoku earthquake tsunami inundation and run-up, Geophys. Res. Lett., 38, L00G14, doi: 10.1029/2011GL049210.
  36. Newman, A.V. (2011). Hidden depth, Nature, 474, 441–443.Google Scholar
  37. Newman, A.V., Hayes, G., Wei, Y. and Convers, J. (2011). The 25 October 2010 Mentawai tsunami earthquake, from real-time discriminants, finite-fault rupture, and tsunami excitation. Geophys. Res. Lett., 38(5), L05302, doi: 10.1029/2010GL046498.
  38. Ohta, Y., Kobayashi, T., Tsushima, H., Miura, S., Hino, R., Takasu, T., Fujimoto, H., Iinuma, T., Tachibana, K., Demachi, T., Sato, T., Ohzono, M., and Umino, N. (2012), Quasi real-time fault model estimation for near-field tsunami forecasting based on RTK-GPS analysis: application to the 2011 Tohoku-Oki earthquake (M w 9.0), J. Geophys. Res. 117, B02311, doi: 10.1029/2011JB008750.
  39. Okal, E.A. and Synolakis, C.E. (2004). Source discriminants for near-field tsunamis, Geophys. J. Int., 158, 899–912, doi: 10.1111/j/1365-246X.2004.02347.x.Google Scholar
  40. Okada, M. (1985). Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am., 75(4), 1135–1154.Google Scholar
  41. Owen, S.E., Webb, F., Simons, M., Rose, P.A., Cruz, J., Yun, S., Fielding, E.J., Moore, A.W., Hua, H., and Agram, P.S. (2011). The ARIA-EQ project: Advanced Rapid Imaging and Analysis for Earthquakes, American Geophysical Union, Fall Meeting 2011, abstract #1N11B-1298.Google Scholar
  42. Ozaki, T. (2012). JMA’s tsunami warning for the 2011 great Tohoku earthquake and tsunami warning improvement plan. J. Disaster Res., 7(7), 439–445.Google Scholar
  43. Percival, D.B., Denbo, D.W., Eble, M.C., Gica, E., Mofjeld, H.O., Spillane, M.C., Tang, L., and Titov, V.V. (2010). Extraction of tsunami source coefficients via inversion of DART ® buoy data, Nat. Hazards, doi: 10.1007/s11069-010-9688-1.
  44. Pietrzek, J., Socquet, A., Ham, D., Simons, W., Vigny, C., Labeur, R.J., Schrama, E., Stelling, G., and Vatvani, D. (2007). Defining the source region of the Indian Ocean tsunami from GPS, altimeters, tide gauges and tsunami models, Earth Planet. Sci. Lett., 261(1–2), 49–64.Google Scholar
  45. Rabak, I., Melbourne, T. I., Santillan, M., Scrivner, C.W., Kinkaid, K., Stahl, R., Rapid assessment and mitigation of Cascadia earthquakes using the combined PANGA and PBO real-time GPS networks, Abstract G11C-04, presented at the 2010 Fall Meeting, AGU, San Francisco, Calif., 2010.Google Scholar
  46. Rivera, L.A., Kanamori, H., and Duputel., Z. (2011). W phase source inversion using high-rate regional GPS data of the 2011 Tohoku-oki earthquake, Abstract G33C-04 presented at the 2011 Fall Meeting, AGU, San Francisco, Calif., 59 Dec. Google Scholar
  47. Satake, K. (1987). Inversion of tsunami waveforms for the estimation of a fault heterogeneity: Methods and numerical experiments, J. Phys. Earth, 35, 241–254.Google Scholar
  48. Satake, K. and Kanamori, H. (1991). Use of tsunami waveforms for earthquake source study, Nat. Hazards, 4, 193–208.Google Scholar
  49. Sato, M., Ishikawa, T., Ujihara, N., Yoshida, S., Fujita, M., Mochizuki, M., and Asada, A. (2011). Displacement above the hypocenter of the 2011 Tohoku-Oki earthquake, Science, 332(6036), 1395, doi: 10.1126/science.1207401.
  50. Simons, M., Minson, S.E., Sladen, A., Ortega, F., Jiang, J., Owen, S.E., Meng, L., J-P. Ampuero, S. Wei, R. Chu, D.V. Helmberger, H. Kanamori, E. Hetland, A.W. Moore, and F.H. Webb (2011), The 2011 magnitude 9.0 Tohoku-Oki earthquake: Mosaicking the megathrust from seconds to centuries, Science, 332(6036), 2011, pp. 1421–1425.Google Scholar
  51. Song, Y.T., Fukumori, I., Shum, C.K., and Yi, Y. (2012). Merging tsunamis of the 2011 Tohoku-Oki earthquake detected over the open ocean. Geophys. Res. Lett., 39, L05606, doi: 10.1029/2011GL050767.
  52. Spillane, M.C., Gica, E., Titov, V.V., and Mofjeld, H.O. (2008) Tsunameter network design for the U.S. DART ® arrays in the Pacific and Atlantic Oceans, NOAA Tech. Memo. OAR PMEL-143, pp 165.Google Scholar
  53. Synolakis, C.E., Bernard, E.N., Titov, V.V., Kânoğlu, U., and González, F.I. (2008). Validation and verification of tsunami numerical models, Pure Appl. Geophys., 165(11–12), 2197–2228.Google Scholar
  54. Tang, L., Titov, V.V., Bernard, E.N., Wei, Y., Chamberlin, C., Newman, J.C., Mofjeld, H., Arcas, D., Eble, M., Moore, C., Uslu, B., Pells, C., Spillane, M.C., Wright, L.M., and Gica, E. (2012). Direct energy estimation of the 2011 Japan tsunami using deep-ocean pressure measurements. J. Geophys. Res., 117, C08008, doi: 10.1029/2011JC007635.
  55. Tang, L., Titov, V.V., and Chamberlin, C.D. (2009). Development, testing, and applications of site-specific tsunami inundation models for real-time forecasting, J. Geophys. Res., 114, C12025, doi: 10.1029/2009JC005476.
  56. Tang, L., Titov, V.V., Wei, Y., Mofjeld, H.O., Spillane, M., Arcas, D., Bernard, E.N., Chamberlin, C., Gica, E., and Newman, J. (2008). Tsunami forecast analysis for the May 2006 Tonga tsunami, J. Geophys. Res., 113, C12015, doi: 10.1029/2008JC004922.
  57. Titov, V.V. (2009). Tsunami forecasting, Chapter 12 in The Sea, Volume 15: Tsunamis, Harvard University Press, Cambridge, MA and London, England, 371–400.Google Scholar
  58. Titov, V., and González, F.I. (1997). Implementation and testing of the Method of Splitting Tsunami (MOST) model, NOAA Tech. Memo. ERL PMEL-112 (PB98-122773), NOAA/Pacific Marine Environmental Laboratory, Seattle, WA, 11 pp.Google Scholar
  59. Titov, V.V., González, F.I., Bernard, E.N., Eble, M.C., Mofjeld, H.O., Newman, J.C., and Venturato, A.J. (2005). Real-time tsunami forecasting: challenges and solutions, Nat. Hazards, 35(1), Special Issue, U.S. National Tsunami Hazard Mitigation Program, 41–58.Google Scholar
  60. Titov, V.V., and Synolakis, C.E. (1998). Numerical modeling of tidal wave runup, J. Waterw. Port Coastal Ocean Eng., 124(4), 157–171.Google Scholar
  61. Tsushima, H., Hino, R., Fujimoto, H., Tanioka, Y., and Imamura, F. (2009). Near-field tsunami forecasting from cabled ocean bottom pressure data, J. Geophys. Res., 114, B06309, doi: 10.1029/2008JB005988.
  62. Vigny, C., Socquet, A., Peyrat, S., Ruegg, J.C., Métois, M., Madariaga, R., Morvan, S., Lancieri, M., Lacassin, R., Campos, J., Carrizo, D., Bejar-Pizarro, M., Barrientos, S., Armijo, R., Aranda, C., Valderas-Bermejo, M.C., Ortega, I., Bondoux, F., Baize, S., Lyon-Caen, H., Pavez, A., Vilotte, J.P., Bevis, M., Brooks, B., Smalley, R., Parra, H., Baez, J.C., Blanco, M., Cimbaro, S., Kendrick, E. (2011). The 2010 Mw 8.8 Maule megathrust earthquake of central Chile, monitored by GPS, Science, 332, 1417–1421.Google Scholar
  63. Wang, X. and Liu, P.L.-F. (2007), Numerical simulations of the 2004 Indian Ocean tsunamis—coastal effects, J. Earthq. Tsunami, 1(3), 273, doi: 10.1142/S179343110700016X.
  64. Wei, Y., Bernard, E., Tang, L., Weiss, R., Titov, V.V., Moore, C., Spillane, M., Hopkins, M.,.and Kânoğlu, U. (2008). Real-time experimental forecast of the Peruvian tsunami of August 2007 for U.S. coastlines, Geophys. Res. Lett., 35, L04609, doi: 10.1029/2007GL032250.
  65. Wei, Y., Chamberlin, C., Titov, V.V., Tang, L. and Bernard, E.N. (2013). Modeling of the 2011 Japan tsunami: Lessons for near-field forecast, Pure Appl. Geophys., 170, 1309–1331.Google Scholar
  66. Wei, Y., Cheung, K.F., Curtis, G.D., and McCreery, C.S. (2003). Inversion algorithm for tsunami forecast, J. Waterw. Port Coastal Ocean Eng., 129, 2003, pp. 60–69.Google Scholar
  67. Whitmore, P.M. (2009). Tsunami warning systems, Chapter 13 in The Sea, Volume 15: Tsunamis, Harvard University Press, Cambridge, MA and London, England, 401–442.Google Scholar
  68. Yamazaki, Y., Lay, T., Cheung, K.F., Yue, H., and Kanamori, H. (2011). Modeling near-field tsunami observations to improve finite-fault slip models for the 11 March 2011 Tohoku earthquake. Geophys. Res. Lett., 38(7), doi: 10.1029/2011GL049130.
  69. Yokota, Y., Koketsu, K., Fujii, Y., Satake, K., Sakao, S., Shinohara, M., and Kanazawa, T. (2011). Joint inversion of strong motion, teleseismic, geodetic, and tsunami datasets for the rupture process of the 2011 Tohoku earthquake, Geophys. Res. Lett., 38, L00G21, doi: 10.1029/2011GL050098.
  70. Yue, H., Lay, T., Schwartz, S. Y., Rivera, J., Protti, M., Dixon, T., Owen, S., Newman, A. (2013). The 5 September 2012 Nicoya, Costa Rica Mw 7.6 earthquake rupture process from joint inversion of high-rate GPS, strong-motion, and teleseismic P wave data and its relationship to adjacent plate boundary interface properties, J. Geophys. Res. Solid Earth, 118(10), 5453–5466.Google Scholar
  71. Zhou, H., Moore, C., Wei, Y.and Titov, V.V. (2011). A nested-grid Boussinesq-type approach to modeling dispersive propagation and runup of landslide-generated tsunami. Nat. Hazards Earth Syst. Sci., 11(10), 2677–2697, doi: 10.5194/nhess-11-2677-2011.
  72. Zhou, H., Wei, Y., Wright, L., and Titov, V.V (2014). Waves and currents in Hawaii waters induced by the dispersive 2011 Tohoku tsunami. Pure Appl. Geophys., doi: 10.1007/s00024-014-0781-3
  73. Zhou, H., Wei, Y., and Titov, V.V. (2012). Dispersive modeling of the 2009 Samoa tsunami. Geophys. Res. Lett., 39(16), L16603, doi: 10.1029/2012GL053068.

Copyright information

© Springer (outside the USA) 2014

Authors and Affiliations

  • Yong Wei
    • 1
    • 2
    Email author
  • Andrew V. Newman
    • 3
  • Gavin P. Hayes
    • 4
  • Vasily V. Titov
    • 1
  • Liujuan Tang
    • 1
    • 2
  1. 1.Joint Institute for the Study of the Atmosphere and OceanUniversity of WashingtonSeattleUSA
  2. 2.Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric AdministrationSeattleUSA
  3. 3.School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaUSA
  4. 4.United States Geological Survey, National Earthquake Information CenterGoldenUSA

Personalised recommendations