Skip to main content
Log in

Determination of Dips and Depths of Near Surface Layers by Radon Transform

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The refracted arrivals on seismic shot records have long been recognized as an efficient tool for the computation of detailed near-surface information. In this paper, a new concept of refraction static, which is based on the Radon transform and avoids the tedious process of picking first arrival times, is proposed. This method is particularly suitable when a rough near-surface problem necessitates the utilization of numerous shallow refraction data for the one reflector case. Quasi-linearity of refractors and a constant velocity medium are assumed within the shooting range. Synthetic and real cases have been tested to evaluate the performance of the method. The result is revealed to be satisfactory. Comparison of the synthetic model with the results obtained through the Radon transform reveals a very good accuracy for the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Ammon, C.J., and Vidale J.E. (1993), Tomography Without Rays, Bull. Seismol, Soc, Am. 83, 509–523.

  • Ayers, J.F. (2000), Seismic Refraction Analysis of Multiple Dipping Interfaces-Revisited, JEEG, 5, 1–5.

  • Cai, J., Decker, M., Bloor, R., and Cunningham, D. (2007), The Velocity and Depth Estimation of Near Surface Layers for Static Correction, SEG, San Antonio Annual Meeting, 1088–1089.

  • Chang, X., Liu, Y., Wang, H., Li, F., and Chen, J. (2002), 3-D Tomographic Static Correction, Geophysics, 67, 1275–1285.

  • Coppens, F. (1985), First Arrival Picking on Common–Offset Trace Collection for Automatic Estimation of Static Corrections, Geophysical Prospecting, 33, 1212–1231.

  • Cox, M. (1999), Static Corrections for Seismic Reflection Surveys, SEG, Tulsa, Oklahoma, USA, 509 pages.

  • Docherty, P. (1992), Solving for the Thickness and Velocity of the Weathering Layer Using 2-D Refraction Tomography, Geophysics, 57, 1307–1318.

  • Durrani, T.S., and Bisset, D. (1984), The Radon Transform and its Properties, Geophysics, 49, 1180–1187.

  • Gelchinsky, B., and Shtivelman, V. (1983), Automatic Picking of First Arrivals and Parameterization of Traveltime Curves, Geophysical Prospecting, 31, 915–928.

  • Hagedoorn, J.G. (1959), The Plus-Minus Method of Interpreting Seismic Refraction Sections, Geophysical Prospecting, 7, 158–182.

  • Mota, L. (1954), Determination of Dips and Depths of Geological Layers by the Seismic Refraction Method: Geophysics, 19, 242–254.

  • Musgrave, A.W. (1967), Seismic Refraction Prospecting, SEG, Tulsa, Oklahoma, USA.

  • Murat, M., and Rudman, A. (1992), Automated First Arrival Picking: A Neural Network Approach: Geophysical Prospecting, 40, 587–604.

  • Palmer, D. (1980), The Generalized Reciprocal Method of Seismic Refraction Interpretation, SEG, Tulsa, General Series, 104 pages.

  • Peraldi, R., and Clement, A. (1972), Digital Processing of Refraction Data Study of First Arrivals, Geophysical Prospecting, 20, 529–548.

  • Stefani, J.P. (1995), Turning –Ray Tomography, Geophysics, 60, 1917–1929.

  • Robinson, E.A. (1983), Migration of Geophysical Data, International Human Resources Development Corp. Boston, 185 pages.

  • Thornburgh, H.R. (1930), Wavefront Diagrams in Seismic Interpretation, AAPG Bull., 14, 185–200.

  • White, D.J. (1989), Two–Dimensional Seismic Refraction Tomography, Geophysical Journal International, 97, 223–245.

  • Yilmaz, O. (2001), Seismic Data Analysis, 2nd edition, SEG, Tulsa, Oklahoma, USA, 2024 pages.

  • Zhang, J., and Toksoz, M.N. (1998), Nonlinear Refraction Traveltime Tomography, Geophysics, 63, 1726–1737.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orhan Gureli.

Appendices

Appendix A

Three layers model shown in Fig. 5a will be used as a basis to formulate general equations that represent the travel times t OABCDE , \( t_{{OA^{\prime}B^{\prime}C^{\prime}D^{\prime}E^{\prime}}} \) and to calculate relevant velocities and thickness terms.

The same statement about the sign of the dip angle remains valid as explained in the main text so that we can handle the problem no matter what is the dip orientation of the interfaces.

Calculations related to +x direction:

To evaluate t ABCDEF , extract the appropriate velocity and thickness terms connected to the trave ltime, and we establish first, referring to Fig. 5a, the following set of relations

$$ OE = x. $$
$$ AD = x\left( {\frac{{\cos (\gamma_{2,1} - \theta_{1} )}}{{\cos \gamma_{2,1} }}} \right) - Z_{1} \left( {\frac{{\sin (\varphi_{2,1} + \gamma_{2,1} )}}{{\cos \varphi_{2,1} \cos \gamma_{2,1} }}} \right). $$
$$ BC = AD\left( {\frac{{\cos (i_{2} - \theta_{2} + \theta_{1} )}}{{\cos i_{2} }}} \right) - 2Z_{2,2} \tan i_{2} . $$
$$ OA = \frac{{Z_{1} }}{{\cos \varphi_{2,1} }},\text{ }AB = \frac{{Z_{2,2} }}{{\cos \varphi_{2,2} }}, $$
$$ CD = \frac{{z^{\prime}_{2,2} }}{{\cos \gamma_{2,2} }},\text{ }DE = \frac{{z_{1} }}{{\cos \gamma_{2,1} }}, $$
$$ z_{1} = Z_{1} - x\sin \theta_{1} ,\text{ }v_{2} = \frac{{v_{1} }}{{\sin i_{2} }}, $$
$$ z_{2,2} = Z_{2,2} - AD\sin \, \left( {\theta_{2} - \theta_{1} } \right),\text{ }i_{2} = \varphi_{2,2} = \gamma_{2,2} . $$
(A-1)

Using the above expressions the total travel time t + x2 can be formulated as

$$ t_{x2}^{ + } = t_{OABCDE} = \frac{OA}{{v_{\text{o}} }} + \frac{AB}{{v_{1} }} + \frac{BC}{{v_{2} }} + \frac{CD}{{v_{1} }} + \frac{DE}{{v_{\text{o}} }}, $$
$$ t_{x2}^{ + } = \frac{{Z_{1} }}{{v_{\text{o}} \cos \varphi_{2,1} }} + \frac{{Z_{2,2} }}{{v_{1} \cos \varphi_{2,2} }} + \frac{BC}{{v_{2} }} + \frac{{z_{2,2} }}{{v_{1} \cos \gamma_{2,2} }} + \frac{{z_{1} }}{{v_{\text{o}} \cos \gamma_{2,1} }}, $$
$$ t_{x2}^{ + } = \frac{BC}{{v_{2} }} + \frac{{2Z_{2,2} - AD\sin (\theta_{2} - \theta_{1} )}}{{v_{1} \cos i_{2} }} + \frac{{Z_{1} }}{{v_{o} \cos \varphi_{2,1} }} + \frac{{Z_{1} - x\sin \theta_{1} }}{{v_{o} \cos \gamma_{2,1} }}, $$
$$ t_{x2}^{ + } = AD\left( {\frac{{\cos (i_{2} - \theta_{2} + \theta_{1} )}}{{v_{2} \cos i_{2} }}} \right) - \frac{{2Z_{2,2} \tan i_{2} }}{{v_{2} }} + \frac{{2Z_{2,2} - AD\sin (\theta_{2} - \theta_{1} )}}{{v_{1} \cos i_{2} }} + \frac{{Z_{1} }}{{v_{\text{o}} \cos \varphi_{2,1} }} + \frac{{Z_{1} - x\sin \theta_{1} }}{{v_{\text{o}} \cos \gamma_{2,1} }}, $$
$$ t_{x2}^{ + } = AD\left( {\frac{{\sin i_{2} \cos (i_{2} - \theta_{2} + \theta_{1} ) - \sin (\theta_{2} - \theta_{1} )}}{{v_{1} \cos i_{2} }}} \right) - \frac{{x\sin \theta_{1} }}{{v_{\text{o}} \cos \gamma_{2,1} }} + \frac{{2Z_{2,2} \cos i_{2} }}{{v_{1} }} + Z_{1} \left( {\frac{{\cos \varphi_{2,1} + \cos \gamma_{2,1} }}{{v_{\text{o}} \cos \varphi_{2,1} \cos \gamma_{2,1} }}} \right), $$
(A-2)
$$ t_{x2}^{ + } = P + Q + \frac{{2Z_{2,2} \cos i_{2} }}{{v_{1} }}, $$
(A-3)

where

$$ P = \frac{{x\cos (\gamma_{2,1} - \theta_{1} )}}{{\cos \gamma_{2,1} }}\left( {\frac{{\sin i_{2} \cos (i_{2} - \theta_{2} + \theta_{1} ) - \sin (\theta_{2} - \theta_{1} )}}{{v_{1} \cos i_{2} }}} \right) - \frac{{x\sin \theta_{1} }}{{v_{o} \cos \gamma_{2,1} }}, $$
(A-4)
$$ Q = - Z_{1} \frac{{\sin (\varphi_{2,1} + \gamma_{2,1} )}}{{\cos \varphi_{2,1} \cos \gamma_{2,1} }}\left( {\frac{{\sin i_{2} \cos (i_{2} - \theta_{2} + \theta_{1} ) - \sin (\theta_{2} - \theta_{1} )}}{{v_{1} \cos i_{2} }}} \right) + Z_{1} \left( {\frac{{\cos \varphi_{2,1} + \cos \gamma_{2,1} }}{{v_{\text{o}} \cos \varphi_{2,1} \cos \gamma_{2,1} }}} \right). $$
(A-5)

We, now, try to simplify and put in more compact form expressions (A-4) and (A-5)

$$ P = \frac{{x\cos (\gamma_{2,1} - \theta_{1} )}}{{v_{1} \cos i_{2} \cos \gamma_{2,1} }}\left( {\sin i_{2} \left( {\cos i_{2} \cos \left( {\theta_{2} - \theta_{1} } \right) + \sin i_{2} \sin \left( {\theta_{2} - \theta_{1} } \right)} \right) - \sin \left( {\theta_{2} - \theta_{1} } \right)} \right) - \frac{{x\sin \theta_{1} }}{{v_{o} \cos \gamma_{2,1} }}, $$
$$ P = \frac{{x\cos (\gamma_{2,1} - \theta_{1} )}}{{v_{1} \cos i_{2} \cos \gamma_{2,1} }}\left( {\cos i_{2} \sin \left( {i_{2} - \theta_{2} + \theta_{1} } \right)} \right) - \frac{{x\sin \theta_{1} }}{{v_{o} \cos \gamma_{2,1} }}, $$
$$ P = \frac{{x\cos (\gamma_{2,1} - \theta_{1} )}}{{v_{1} \cos \gamma_{2,1} }}\sin (i_{2} - \theta_{2} + \theta_{1} ) - \frac{{x\sin \theta_{1} }}{{v_{o} \cos \gamma_{2,1} }}. $$
(A-6)

Using Snell’s law

$$ \frac{{v_{\text{o}} }}{{\sin \varphi_{2,1} }} = \frac{{v_{1} }}{{\sin (\alpha_{2,1} )}} = \frac{{v_{1} }}{{\sin (i_{2} + \theta_{2} - \theta_{1} )}},\frac{{v_{\text{o}} }}{{\sin \gamma_{2,1} }} = \frac{{v_{1} }}{{\sin (\beta_{2,1} )}} = \frac{{v_{1} }}{{\sin (i_{2} - \theta_{2} + \theta_{1} )},} $$
(A-7)
$$ v_{1} = \frac{{v_{\text{o}} \sin (i_{2} + \theta_{2} - \theta_{1} )}}{{\sin \varphi_{2,1} }}\,\text{ }{\text{or}}\,\text{ }v_{1} = \frac{{v_{\text{o}} \sin (i_{2} - \theta_{2} + \theta_{1} )}}{{\sin \gamma_{2,1} }} $$
(A-8)

and putting (A-8) into (A-6) gives

$$ P = \frac{{x\cos (\gamma_{2,1} - \theta_{1} )}}{{\cos \gamma_{2,1} \frac{{v_{\text{o}} \sin (i_{2} - \theta_{2} + \theta_{1} )}}{{\sin \gamma_{2,1} }}}}\sin (i_{2} - \theta_{2} + \theta_{1} ) - \frac{{x\sin \theta_{1} }}{{v_{\text{o}} \cos \gamma_{2,1} }}, $$
$$ P = \frac{{x\cos (\gamma_{2,1} - \theta_{1} )\sin \beta_{2,1} }}{{v_{\text{o}} \cos \gamma_{2,1} }} - \frac{{x\sin \theta_{1} }}{{v_{\text{o}} \cos \gamma_{2,1} }}, $$
$$ P = \frac{{x\cos (\gamma_{2,1} - \theta_{1} )\sin \gamma_{2,1} - x\sin \theta_{1} }}{{v_{\text{o}} \cos \gamma_{2,1} }}, $$
$$ P = \frac{{x\sin \gamma_{2,1} \left( {\cos \gamma_{2,1} \cos \theta_{1} + \sin \gamma_{2,1} \sin \theta_{1} } \right) - x\sin \theta_{1} }}{{v_{\text{o}} \cos \gamma_{2,1} }}, $$
$$ P = \frac{{x\sin \left( {\gamma_{2,1} - \theta_{1} } \right)}}{{v_{\text{o}} }}. $$
( A-9)

A similar calculation is carried out on Q yielding

$$ Q = - Z_{1} \frac{{\sin (\alpha_{2,1} + \beta_{2,1} )}}{{\cos \alpha_{2,1} \cos \beta_{2,1} }}\left( {\frac{{\sin i_{2} \cos (i_{2} - \theta_{2} + \theta_{1} ) - \sin (\theta_{2} - \theta_{1} )}}{{v_{1} \cos i_{2} }}} \right) + Z_{1} \left( {\frac{{\cos \alpha_{2,1} + \cos \beta_{2,1} }}{{v_{\text{o}} \cos \alpha_{2,1} \cos \beta_{2,1} }}} \right), $$
$$ Q = - Z_{1} \frac{{\sin (\alpha_{2,1} + \beta_{2,1} )}}{{\cos \alpha_{2,1} \cos \beta_{2,1} }}\left( {\frac{{\sin (i_{2} - \theta_{2} + \theta_{1} )}}{{v_{1} }}} \right) + Z_{1} \left( {\frac{{\cos \alpha_{2,1} + \cos \beta_{2,1} }}{{v_{\text{o}} \cos \alpha_{2,1} \cos \beta_{2,1} }}} \right), $$
$$ v_{1} = \frac{{v_{\text{o}} \sin (i_{2} - \theta_{2} + \theta_{1} )}}{{\sin \beta_{2,1} }}, $$
$$ Q = - Z_{1} \frac{{\sin (\varphi_{2,1} + \gamma_{2,1} )}}{{\cos \varphi_{2,1} \cos \gamma_{2,1} }}\left( {\frac{{\sin (i_{2} - \theta_{2} + \theta_{1} )\sin \gamma_{2,1} }}{{v_{\text{o}} \sin (i_{2} - \theta_{2} + \theta_{1} )}}} \right) + Z_{1} \left( {\frac{{\cos \varphi_{2,1} + \cos \gamma_{2,1} }}{{v_{\text{o}} \cos \varphi_{2,1} \cos \gamma_{2,1} }}} \right), $$
$$ Q = - Z_{1} \frac{{\sin \gamma_{2,1} \sin (\varphi_{2,1} + \gamma_{2,1} )}}{{v_{\text{o}} \cos \varphi_{2,1} \cos \gamma_{2,1} }} + Z_{1} \left( {\frac{{\cos \varphi_{2,1} + \cos \gamma_{2,1} }}{{v_{\text{o}} \cos \varphi_{2,1} \cos \gamma_{2,1} }}} \right), $$
$$ Q = - Z_{1} \frac{{\sin \gamma_{2,1} \left( {\sin \varphi_{2,1} \cos \gamma_{2,1} + \cos \alpha_{2,1} \sin \gamma_{2,1} } \right)}}{{v_{\text{o}} \cos \varphi_{2,1} \cos \gamma_{2,1} }} + Z_{1} \left( {\frac{{\cos \varphi_{2,1} + \cos \gamma_{2,1} }}{{v_{\text{o}} \cos \varphi_{2,1} \cos \gamma_{2,1} }}} \right), $$
$$ Q = Z_{1} \frac{{\cos \gamma_{2,1} \left( {\cos \varphi_{2,1} \cos \gamma_{2,1} - \sin \varphi_{2,1} \sin \gamma_{2,1} } \right)}}{{v_{\text{o}} \cos \varphi_{2,1} \cos \gamma_{2,1} }} + Z_{1} \left( {\frac{{\cos \gamma_{2,1} }}{{v_{\text{o}} \cos \varphi_{2,1} \cos \gamma_{2,1} }}} \right), $$
$$ Q = Z_{1} \frac{{\cos \left( {\varphi_{2,1} + \gamma_{2,1} } \right)}}{{v_{\text{o}} \cos \varphi_{2,1} }} + Z_{1} \left( {\frac{1}{{v_{\text{o}} \cos \varphi_{2,1} }}} \right), $$
$$ Q = \frac{{Z_{1} }}{{v_{\text{o}} }}\frac{{\cos \left( {\varphi_{2,1} + \gamma_{2,1} } \right) + 1}}{{\cos \varphi_{2,1} }}. $$
(A-10)

Replacing (A-9) and (A-10) in (A-3), the travel time expression becomes

$$ t_{x}^{ + } = \frac{{x\sin \left( {\gamma_{2,1} - \theta_{1} } \right)}}{{v_{\text{o}} }} + \frac{{Z_{1} }}{{v_{\text{o}} }}\frac{{\cos \left( {\varphi_{2,1} + \gamma_{2,1} } \right) + 1}}{{\cos \varphi_{2,1} }} + \frac{{2Z_{2,2} \cos i_{2} }}{{v_{1} }}, $$
(A-11)
$$ t_{x}^{ + } = \frac{x}{{v_{r2} }} + t_{i2} , $$
(A-12)

where

$$ v_{r2} = \frac{{v_{\text{o}} }}{{\sin \left( {\gamma_{2,1} - \theta_{1} } \right)}}, $$
(A-13)

and

$$ t_{i2} = \frac{{Z_{1} }}{{v_{\text{o}} }}\frac{{\cos \left( {\varphi_{2,1} + \gamma_{2,1} } \right) + 1}}{{\cos \varphi_{2,1} }} + \frac{{2Z_{2,2} \cos i_{2} }}{{v_{1} }}. $$
(A-14)

From (A-14) we find easily the thickness Z 2,2 of the second layer at point A.

$$ Z_{2,2} = \frac{{v_{1} \left( {t_{i2} - \frac{{Z_{1} }}{{v_{\text{o}} }}\frac{{\cos \left( {\varphi_{2,1} + \gamma_{2,1} } \right) + 1}}{{\cos \varphi_{2,1} }}} \right)}}{{2\cos i_{2} }}. $$
(A-15)

In order to calculate Z 2,2 we, first, obtain θ 1, v o and Z 1 as explained in the previous part of this paper.

After determining, through Radon transform, apparent velocities v r2 and v l2, we can write (Fig. 5a) the following expressions

$$ \varphi_{2,1} = {\text{arc }}\sin \frac{{v_{\text{o}} }}{{v_{l2} }} - \theta_{1} , $$
(A-16)
$$ \gamma_{2,1} = {\text{arc }}\sin \frac{{v_{\text{o}} }}{{v_{r2} }} + \theta_{1} , $$
(A-17)
$$ \alpha_{2,1} = {\text{arc }}\sin \left( {\frac{{v_{1} }}{{v_{\text{o}} }}\sin \varphi_{2,1} } \right), $$
(A-18)
$$ \beta_{2,1} = {\text{arc }}\sin \left( {\frac{{v_{1} }}{{v_{\text{o}} }}\sin \gamma_{2,1} } \right), $$
(A-19)
$$ \varphi_{2,1} = \alpha_{2,1} - (\theta_{2} - \theta_{1} ), $$
(A-20)
$$ \gamma_{2,1} = \beta_{2,1} + (\theta_{2} - \theta_{1} ), $$
(A-21)
$$ \theta_{2} = \frac{{\alpha_{2,1} - \beta_{2,1} }}{2} + \theta_{1} , $$
(A-22)
$$ i_{2} = \varphi_{2,2} = \gamma_{2,2} = \frac{{\alpha_{2,1} + \beta_{2,1} }}{2}. $$
( A-23)

Using (A-8) and (A-12), v 2 is found to be as

$$ v_{2} = \frac{{v_{1} }}{{\sin i_{2} }}. $$
(A-24)

Putting (A-16) and (A-17) into (A-18) and (A-19), respectively, we find α 2,1 and β 2,1. After that, we calculate θ 2 and i 2 by using (A-22) and (A-23).

Evaluation of Z 2t and H 2:

We can write (Fig. 5b) following expression

$$ Z_{2t} = ON + NW + WK. $$
(A-25)

According to the sign of sin(θ 2 − θ 1), NW = NA sin(θ 2 − θ 1) may be either negative or positive. But in both cases (A-25) holds, always, true.

In (A-25)

$$ NA = MA - MN, $$
$$ NA = Z_{1} \tan \varphi_{2,1} - Z_{1} \tan \left( {\theta_{2} - \theta_{1} } \right). $$
(A-26)

In this formula tan(θ 2 − θ 1) determines the sign of Z 1 tan(θ 2 − θ 1) so that the length of Z 1 tan(θ 2 − θ 1) should be added or subtracted from MA according to the sign of tan(θ 2 − θ 1), if we put

$$ ON = \frac{{Z_{1} }}{{\cos \left( {\theta_{2} - \theta_{1} } \right)}}, $$
(A-27)

and

$$ WK = Z_{2,2} . $$
(A-28)

In (A-25) we obtain

$$ \begin{gathered} Z_{2t} = \frac{{Z_{1} }}{{\cos \left( {\theta_{2} - \theta_{1} } \right)}} + Z_{1} \sin \left( {\theta_{2} - \theta_{1} } \right)\left[ {\tan \varphi_{2,1} - \tan \left( {\theta_{2} - \theta_{1} } \right)} \right] + Z_{2,2} , \hfill \\ Z_{2t} = Z_{1} \left[ {\frac{{\cos \left( {\varphi_{2,1} - \theta_{2} + \theta_{1} } \right)}}{{\cos \varphi_{2,1} }}} \right] + Z_{2,2} \hfill. \\ \end{gathered} $$
(A-29)

This formula is equivalent to that already developed by Mota (1954). But it is valid whatever is the orientation of the interfaces. In other words, whatever the sign of θ 1 and θ 2. Another requested quantity H 2 is as

$$ H_{2} = \frac{{Z_{2t} }}{{\cos \theta_{2} }} = \frac{1}{{\cos \theta_{2} }}\left[ {Z_{1} \frac{{\cos \left( {\varphi_{2,1} - \theta_{2} + \theta_{1} } \right)}}{{\cos \varphi_{2,1} }} + Z_{2,2} } \right]. $$
(A-30)

Calculations related to −x direction:

The same line of reasoning, used for the +x direction, yields the following expressions.

$$ t_{x2}^{ - } = t_{{OA^{\prime}B^{\prime}C^{\prime}D^{\prime}E^{\prime}}} = \frac{{OA^{\prime}}}{{v_{\text{o}} }} + \frac{{A^{\prime}B^{\prime}}}{{v_{1} }} + \frac{{B^{\prime}C^{\prime}}}{{v_{2} }} + \frac{{C^{\prime}D^{\prime}}}{{v_{1} }} + \frac{{D^{\prime}E^{\prime}}}{{v_{\text{o}} }}, $$
(A-31)

where individual ray path lengths are

$$ OE^{\prime } = x, $$
$$ OA^{\prime} = \frac{{Z_{1} }}{{\cos \gamma_{2,1} }},\,\,A^{\prime}B^{\prime} = \frac{{Z^{\prime}_{2,2} }}{{\cos \gamma_{2,2} }}, $$
$$ C^{\prime}D^{\prime} = \frac{{z^{\prime}_{2,2} }}{{\cos \varphi_{2,2} }},\,\,D^{\prime}E^{\prime} = \frac{{z^{\prime}_{1} }}{{\cos \varphi_{2,1} }}, $$
$$ B^{\prime}C^{\prime} = A^{\prime}D^{\prime}\left( {\frac{{\cos (i_{2} + \theta_{2} - \theta_{1} )}}{{\cos i_{2} }}} \right) - 2Z^{\prime}_{2,2} \tan i_{2} , $$
(A-32)

where

$$ \begin{gathered} A^{\prime } D^{\prime } = x\cos \theta_{1} - (Z_{1} \tan \gamma_{2,1} + z^{\prime }_{1} \tan \varphi_{2,1} ), \hfill \\ A^{\prime}D^{\prime} = x\left( {\frac{{\cos (\varphi_{2,1} + \theta_{1} )}}{{\cos \varphi_{2,1} }}} \right) - Z_{1} \left( {\frac{{\sin (\varphi_{2,1} + \gamma_{2,1} )}}{{\cos \varphi_{2,1} \cos \gamma_{2,1} }}} \right). \hfill \\ \end{gathered} $$
(A-33)

Combining (A-31), (A-32), (A-33) and keeping in mind that

$$ t_{x2}^{ - } = \frac{{OA^{\prime}}}{{v_{\text{o}} }} + \frac{{A^{\prime}B^{\prime}}}{{v_{1} }} + \frac{{B^{\prime}C^{\prime}}}{{v_{2} }} + \frac{{C^{\prime}D^{\prime}}}{{v_{1} }} + \frac{{D^{\prime}E^{\prime}}}{{v_{\text{o}} }}, $$
$$ t_{x2}^{ - } = \frac{{Z_{1} }}{{v_{\text{o}} \cos \gamma_{2,1} }} + \frac{{Z^{\prime}_{2,2} }}{{v_{1} \cos \gamma_{2,2} }} + \frac{{B^{\prime}C^{\prime}}}{{v_{2} }} + \frac{{z^{\prime}_{2,2} }}{{v_{1} \cos \gamma_{2,2} }} + \frac{{z^{\prime}_{1} }}{{v_{\text{o}} \cos \gamma_{2,1} }}, $$
$$ t_{x2}^{ - } = \frac{{B^{\prime}C^{\prime}}}{{v_{2} }} + \frac{{2Z^{\prime}_{2,2} + A^{\prime}D^{\prime}\sin (\theta_{2} - \theta_{1} )}}{{v_{1} \cos i_{2} }} + \frac{{Z_{1} }}{{v_{\text{o}} \cos \gamma_{2,1} }} + \frac{{Z_{1} + x\sin \theta_{1} }}{{v_{\text{o}} \cos \varphi_{2,1} }}, $$
$$ t_{x2}^{ - } = A^{\prime}D^{\prime}\left( {\frac{{\cos (i_{2} + \theta_{2} - \theta_{1} )}}{{v_{2} \cos i_{2} }}} \right) - \frac{{2Z^{\prime}_{2,2} \tan i_{2} }}{{v_{2} }} + \frac{{2Z^{\prime}_{2,2} + A^{\prime}D^{\prime}\sin (\theta_{2} - \theta_{1} )}}{{v_{1} \cos i_{2} }} + \frac{{Z_{1} }}{{v_{\text{o}} \cos \gamma_{2,1} }} + \frac{{Z_{1} + x\sin \theta_{1} }}{{v_{\text{o}} \cos \varphi_{2,1} }}. $$

We find that

$$ t_{x2}^{ - } = A^{\prime}D^{\prime}\left( {\frac{{\sin i_{2} \cos (i_{2} + \theta_{2} - \theta_{1} ) + \sin (\theta_{2} - \theta_{1} )}}{{v_{1} \cos i_{2} }}} \right) + \frac{{2Z^{\prime}_{2,2} \cos i_{2} }}{{v_{1} }} + \frac{{Z_{1} }}{{v_{\text{o}} \cos \gamma_{2,1} }} + \frac{{Z_{1} + x\sin \theta_{1} }}{{v_{\text{o}} \cos \varphi_{2,1} }}, $$
$$ t_{x2}^{ - } = A^{\prime}D^{\prime}\left( {\frac{{\sin i_{2} \cos (i_{2} + \theta_{2} - \theta_{1} ) + \sin (\theta_{2} - \theta_{1} )}}{{v_{1} \cos i_{2} }}} \right) + \frac{{x\sin \theta_{1} }}{{v_{\text{o}} \cos \varphi_{2,1} }} + \frac{{2Z^{\prime}_{2,2} \cos i_{2} }}{{v_{1} }} + Z_{1} \left( {\frac{{\cos \varphi_{2,1} + \cos \gamma_{2,1} }}{{v_{\text{o}} \cos \varphi_{2,1} \cos \gamma_{2,1} }}} \right), $$
$$ t_{x2}^{ - } = A^{\prime}D^{\prime}\left( {\frac{{\sin (i_{2} + \theta_{2} - \theta_{1} )}}{{v_{1} }}} \right) + \frac{{x\sin \theta_{1} }}{{v_{\text{o}} \cos \varphi_{2,1} }} + \frac{{2Z^{\prime}_{2,2} \cos i_{2} }}{{v_{1} }} + Z_{1} \left( {\frac{{\cos \varphi_{2,1} + \cos \gamma_{2,1} }}{{v_{\text{o}} \cos \varphi_{2,1} \cos \gamma_{2,1} }}} \right), $$
$$ \begin{gathered} t_{x2}^{ - } = \left( {\frac{{\sin (i_{2} + \theta_{2} - \theta_{1} )}}{{v_{1} }}} \right)\left( {x\left( {\frac{{\cos (\varphi_{2,1} + \theta_{1} )}}{{\cos \varphi_{2,1} }}} \right) - Z_{1} \left( {\frac{{\sin (\varphi_{2,1} + \gamma_{2,1} )}}{{\cos \varphi_{2,1} \cos \gamma_{2,1} }}} \right)} \right) + \frac{{x\sin \theta_{1} }}{{v_{\text{o}} \cos \varphi_{2,1} }} + \frac{{2Z^{\prime}_{2,2} \cos i_{2} }}{{v_{1} }} + Z_{1} \left( {\frac{{\cos \varphi_{2,1} + \cos \gamma_{2,1} }}{{v_{\text{o}} \cos \varphi_{2,1} \cos \gamma_{2,1} }}} \right) \hfill \\ t_{x2}^{ - } = x\left( {\frac{{\sin (i_{2} + \theta_{2} - \theta_{1} )\cos (\varphi_{2,1} + \theta_{1} )}}{{v_{1} \cos \varphi_{2,1} }}} \right) + \frac{{x\sin \theta_{1} }}{{v_{\text{o}} \cos \varphi_{2,1} }} - Z_{1} \left( {\frac{{\sin (i_{2} + \theta_{2} - \theta_{1} )\sin (\varphi_{2,1} + \gamma_{2,1} )}}{{v_{1} \cos \varphi_{2,1} \cos \gamma_{2,1} }}} \right) + Z_{1} \left( {\frac{{\cos \varphi_{2,1} + \cos \gamma_{2,1} }}{{v_{\text{o}} \cos \varphi_{2,1} \cos \gamma_{2,1} }}} \right) + \frac{{2Z^{\prime}_{2,2} \cos i_{2} }}{{v_{1} }}. \hfill \\ \end{gathered} $$
$$ t_{x}^{ - } = P^{\prime} + Q^{\prime} + \frac{{2Z^{\prime}_{2,2} \cos i_{2} }}{{v_{1} }}, $$
(A-34)

where

$$ P^{\prime} = x\left( {\frac{{\sin (i_{2} + \theta_{2} - \theta_{1} )\cos (\alpha_{2,1} + \theta_{1} )}}{{v_{1} \cos \varphi_{2,1} }}} \right) + \frac{{x\sin \theta_{1} }}{{v_{\text{o}} \cos \varphi_{2,1} }}, $$
$$ Q^{\prime} = - Z_{1} \left( {\frac{{\sin (i_{2} + \theta_{2} - \theta_{1} )\sin (\varphi_{2,1} + \gamma_{2,1} )}}{{v_{1} \cos \varphi_{2,1} \cos \gamma_{2,1} }}} \right) + Z_{1} \left( {\frac{{\cos \varphi_{2,1} + \cos \gamma_{2,1} }}{{v_{o} \cos \varphi_{2,1} \cos \gamma_{2,1} }}} \right), $$
(A-35)

and, finally, we find

$$ P^{\prime} = \frac{{x\sin \left( {\varphi_{2,1} + \theta_{1} } \right)}}{{v_{\text{o}} }}. $$
$$ Q^{\prime} = \frac{{Z_{1} }}{{v_{\text{o}} }}\frac{{\cos \left( {\varphi_{2,1} + \gamma_{2,1} } \right) + 1}}{{\cos \gamma_{2,1} }}. $$
$$ t_{x2}^{ - } = \frac{{x\sin \left( {\varphi_{2,1} + \theta_{1} } \right)}}{{v_{\text{o}} }} + \frac{{Z_{1} }}{{v_{\text{o}} }}\frac{{\cos \left( {\varphi_{2,1} + \gamma_{2,1} } \right) + 1}}{{\cos \gamma_{2,1} }} + \frac{{2Z^{\prime}_{2,2} \cos i_{2} }}{{v_{1} }}. $$
$$ t_{x2}^{ - } = \frac{x}{{v_{l2} }} + t^{\prime}_{i2} , $$
(A-36)

where

$$ v_{l2} = \frac{{v_{\text{o}} }}{{\sin \left( {\varphi_{2,1} + \theta_{1} } \right)}}, $$
(A-37)

and

$$ t^{\prime}_{i2} = \frac{{Z_{1} }}{{v_{\text{o}} }}\frac{{\cos \left( {\varphi_{2,1} + \gamma_{2,1} } \right) + 1}}{{\cos \gamma_{2,1} }} + \frac{{2Z^{\prime}_{2,2} \cos i_{2} }}{{v_{1} }}. $$
(A-38)

From (A-38) \( Z_{2,2}^{{\prime }} \) is found to be

$$ Z^{\prime}_{2,2} = \frac{{v_{1} \left( {t^{\prime}_{i2} - \frac{{Z_{1} }}{{v_{\text{o}} }}\frac{{\cos \left( {\varphi_{2,1} + \gamma_{2,1} } \right) + 1}}{{\cos \gamma_{2,1} }}} \right)}}{{2\cos i_{2} }}. $$
(A-39)

Evaluation of Z 2t and H 2:

We can write (Fig. 5c) following expression

$$ Z_{2t} = ON + NK, $$
(A-40)

where

$$ ON = \frac{{Z_{1} }}{{\cos \left( {\theta_{2} - \theta_{1} } \right)}}, $$
(A-41)

and

$$ NK = Z^{\prime}_{2,2} - A^{\prime}N\sin (\theta_{2} - \theta_{1} ). $$
(A-42)

If we put

$$ Z_{2t} = \frac{{Z_{1} }}{{\cos \left( {\theta_{2} - \theta_{1} } \right)}} + Z^{\prime}_{2,2} - A^{\prime}N\sin (\theta_{2} - \theta_{1} ). $$
(A-43)

A N sin(θ 2 − θ 1) may be negative or positive according to the sign of (θ 2 − θ 1).

Simplification of formula (A-43) yields

$$ Z_{2t} = Z_{1} \left[ {\frac{{\cos \left( {\gamma_{2,1} + \theta_{2} - \theta_{1} } \right)}}{{\cos \gamma_{2,1} }}} \right] + Z^{\prime}_{2,2} , $$
(A-44)

and

$$ H_{2} = \frac{{Z_{2t} }}{{\cos \theta_{2} }} = \frac{1}{{\cos \theta_{2} }}\left[ {Z_{1} \frac{{\cos \left( {\gamma_{2,1} + \theta_{2} - \theta_{1} } \right)}}{{\cos \gamma_{2,1} }} + Z^{\prime}_{2,2} } \right]. $$
(A-45)

Appendix B

Demonstration of the equality \( t_{i2} = t_{i2}^{\prime }\) follows:

We know from (A-14) and (A-38)

$$ t_{i2} = \frac{{Z_{1} }}{{v_{\text{o}} }}\frac{{\cos \left( {\varphi_{2,1} + \gamma_{2,1} } \right) + 1}}{{\cos \varphi_{2,1} }} + \frac{{2Z_{2,2} \cos i_{2} }}{{v_{1} }}. $$
$$ t^{\prime}_{i2} = \frac{{Z_{1} }}{{v_{\text{o}} }}\frac{{\cos \left( {\varphi_{2,1} + \gamma_{2,1} } \right) + 1}}{{\cos \gamma_{2,1} }} + \frac{{2Z^{\prime}_{2,2} \cos i_{2} }}{{v_{1} }}. $$

Let’s suppose that

$$ t_{i2} = t^{\prime}_{i2} , $$
(B-1)
$$ \frac{{Z_{1} }}{{v_{\text{o}} }}\frac{{\cos \left( {\varphi_{2,1} + \gamma_{2,1} } \right) + 1}}{{\cos \varphi_{2,1} }} + \frac{{2Z_{2,2} \cos i_{2} }}{{v_{1} }} = \frac{{Z_{1} }}{{v_{\text{o}} }}\frac{{\cos \left( {\varphi_{2,1} + \gamma_{2,1} } \right) + 1}}{{\cos \gamma_{2,1} }} + \frac{{2Z^{\prime}_{2,2} \cos i_{2} }}{{v_{1} }}, $$
$$ \frac{{Z_{1} }}{{v_{\text{o}} }}\left( {\frac{{\cos \left( {\varphi_{2,1} + \gamma_{2,1} } \right) + 1}}{{\cos \varphi_{2,1} }} - \frac{{\cos \left( {\varphi_{2,1} + \gamma_{2,1} } \right) + 1}}{{\cos \gamma_{2,1} }}} \right) = \frac{{2\cos i_{2} }}{{v_{1} }}\left( {Z^{\prime}_{2,2} - Z_{2,2} } \right), $$
$$ Z_{{_{2,2} }}^{\prime } = Z_{1} \sin \left( {\theta_{2} - \theta_{1} } \right)(\tan \varphi_{2,1} + \tan \gamma_{2,1} ) + Z_{2,2} , $$
$$ \frac{{Z_{1} }}{{v_{\text{o}} }}\left( {\frac{{\cos \left( {\varphi_{2,1} + \gamma_{2,1} } \right) + 1}}{{\cos \varphi_{2,1} }} - \frac{{\cos \left( {\varphi_{2,1} + \gamma_{2,1} } \right) + 1}}{{\cos \gamma_{2,1} }}} \right) = \frac{{2\cos i_{2} }}{{v_{1} }}Z_{1} \sin \left( {\theta_{2} - \theta_{1} } \right)\left( {\tan \varphi_{2,1} + \tan \gamma_{2,1} } \right), $$
$$ \frac{{Z_{1} \left( {\cos \left( {\varphi_{2,1} + \gamma_{2,1} } \right) + 1} \right)}}{{v_{\text{o}} }}\left( {\frac{{\cos \gamma_{2,1} - \cos \varphi_{2,1} }}{{\cos \varphi_{2,1} \cos \gamma_{2,1} }}} \right) = \frac{{2\cos i_{2} }}{{v_{1} }}Z_{1} \sin \left( {\theta_{2} - \theta_{1} } \right)\left( {\frac{{\sin \varphi_{2,1} }}{{\cos \varphi_{2,1} }} + \frac{{\sin \gamma_{2,1} }}{{\cos \gamma_{2,1} }}} \right), $$
$$ \frac{{\left( {\cos \left( {\varphi_{2,1} + \gamma_{2,1} } \right) + 1} \right)}}{{v_{\text{o}} }}\left( {\cos \gamma_{2,1} - \cos \varphi_{2,1} } \right) = \frac{{2\cos i_{2} }}{{v_{1} }}\sin \left( {\theta_{2} - \theta_{1} } \right)\sin \left( {\varphi_{2,1} + \gamma_{2,1} } \right), $$
$$ \frac{{\sin \left( {\varphi_{2,1} + \gamma_{2,1} } \right)\left( {\sin \varphi_{2,1} - \sin \gamma_{2,1} } \right)}}{{v_{\text{o}} }} = \frac{{2\cos i_{2} }}{{v_{1} }}\sin \left( {\theta_{2} - \theta_{1} } \right)\sin \left( {\varphi_{2,1} + \gamma_{2,1} } \right), $$
$$ \frac{{\left( {\sin \varphi_{2,1} - \sin \gamma_{2,1} } \right)}}{{v_{\text{o}} }} = \frac{{2\cos i_{2} }}{{v_{1} }}\sin \left( {\theta_{2} - \theta_{1} } \right), $$
$$ \frac{{\sin \varphi_{2,1} }}{{v_{\text{o}} }} - \frac{{\sin \gamma_{2,1} }}{{v_{\text{o}} }} = \frac{{2\cos i_{2} }}{{v_{1} }}\sin \left( {\theta_{2} - \theta_{1} } \right). $$
(B-2)

Using Snell’s law

$$ \frac{{\sin \varphi_{2,1} }}{{v_{\text{o}} }} = \frac{{\sin \left( {i_{2} + \theta_{2} - \theta_{1} } \right)}}{{v_{1} }}, $$
(B-3)
$$ \frac{{\sin \gamma_{2,1} }}{{v_{\text{o}} }} = \frac{{\sin \left( {i_{2} - \theta_{2} + \theta_{1} } \right)}}{{v_{1} }}, $$
(B-4)
$$ \frac{{\sin \varphi_{2,1} }}{{v_{\text{o}} }} - \frac{{\sin \gamma_{2,1} }}{{v_{\text{o}} }} = \frac{{\sin \left( {i_{2} + \theta_{2} - \theta_{1} } \right)}}{{v_{1} }} - \frac{{\sin \left( {i_{2} - \theta_{2} + \theta_{1} } \right)}}{{v_{1} }}, $$
(B-5)

inserting (B-5) into (B-2) we find

$$ \frac{{\sin \left( {i_{2} + \theta_{2} - \theta_{1} } \right)}}{{v_{1} }} - \frac{{\sin \left( {i_{2} - \theta_{2} + \theta_{1} } \right)}}{{v_{1} }} = \frac{{2\cos i_{2} }}{{v_{1} }}\sin \left( {\theta_{2} - \theta_{1} } \right), $$
$$ \frac{1}{{v_{1} }}\left[ {\sin \left( {i_{2} + \theta_{2} - \theta_{1} } \right) - \sin \left( {i_{2} - \theta_{2} + \theta_{1} } \right)} \right] = \frac{{2\cos i_{2} }}{{v_{1} }}\sin \left( {\theta_{2} - \theta_{1} } \right), $$
(B-6)

and after simplification (B-6) becomes

$$ 2\cos i_{2} \sin \left( {\theta_{2} - \theta_{1} } \right) = 2\cos i_{2} \sin \left( {\theta_{2} - \theta_{1} } \right). $$
(B-7)

The result represented by (B-7) shows that the equality given in formula (B-1) is valid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gureli, O. Determination of Dips and Depths of Near Surface Layers by Radon Transform. Pure Appl. Geophys. 171, 1805–1827 (2014). https://doi.org/10.1007/s00024-013-0770-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-013-0770-y

Keywords

Navigation