Pure and Applied Geophysics

, Volume 171, Issue 8, pp 1963–1982 | Cite as

Numerical Modeling of Ice Fog in Interior Alaska Using the Weather Research and Forecasting Model

  • Chang Ki Kim
  • Martin Stuefer
  • Carl G. Schmitt
  • Andrew Heymsfield
  • Greg Thompson
Article

Abstract

An ice microphysics parameterization scheme has been modified to better describe and understand ice fog formation. The modeling effort is based on observations in the Sub-Arctic Region of Interior Alaska, where ice fog occurs frequently during the cold season due to abundant water vapor sources and strong inversions existing near the surface at extremely low air temperatures. The microphysical characteristics of ice fog are different from those of other ice clouds, implying that the microphysical processes of ice should be changed in order to generate ice fog particles. Ice fog microphysical characteristics were derived with the NCAR Video Ice Particle Sampler during strong ice fog cases in the vicinity of Fairbanks, Alaska, in January and February 2012. To improve the prediction of ice fog in the Weather Research and Forecasting model, observational data were used to change particle size distribution properties and gravitational settling rates, as well as to implement a homogeneous freezing process. The newly implemented homogeneous freezing process compliments the existing heterogeneous freezing scheme and generates a higher number concentration of ice crystals than the original Thompson scheme. The size distribution of ice crystals is changed into a Gamma distribution with the shape factor of 2.0, using the observed size distribution. Furthermore, gravitational settling rates are reduced for the ice crystals since the crystals in ice fog do not precipitate in a similar manner when compared to the ice crystals of cirrus clouds. The slow terminal velocity plays a role in increasing the time scale for the ice crystals to settle to the surface. Sensitivity tests contribute to understanding the effects of water vapor emissions as an anthropogenic source on the formation of ice fog.

Keywords

Ice fog Homogeneous freezing Haze droplets Gamma distribution WRF 

Abbreviations and Symbols

ar_i

7.22

br_i

–0.35

\( a_{\text{w,liq}} \)

Water activity of solution in liquid phase

\( \varDelta a_{\text{w}} \)

Difference of water activity between liquid and ice

D

Diameter for an individual ice crystal

HPP

Heat and power plant

IWC

Ice water content

Jh

Nucleation rate of haze droplets

Js

Nucleation rate of pure water

M

Molality of solution

Mw

Molecular weight of pure water

MOD

Experiment with modified Thompson scheme

MODIS

Moderate resolution imaging spectroradiometer

MSLP

Mean sea level pressure

MWMD

Mass-weighted mean diameter

NARR

North American Regional Reanalysis

NCEP

National Center for Environment Prediction

NOE

Experiment without water vapor emission

Nc

Number concentration of cloud droplets

Nf,h

Number concentration of haze droplets freezing in time step

Nf,s

Number concentration of cloud droplets freezing in time step

Nh

Number concentration of haze droplets

Ni

Number concentration of ice crystals

n(D)

Size distribution

OBS

Observation

ORG

Experiment with original Thompson scheme

qve

Water vapor mixing ratio emitted from the source

qv

Water vapor mixing ratio

RAMS

Regional atmospheric modeling system

RH

Relative humidity

RRTMG

Rapid Radiative Transfer Model for GCM application

rh

Radius of haze droplet

SUCCESS

SUbsonic aircraft: Contrail and Cloud Effects Special Study

T

Air temperature

VIPS

Video ice particle sampler

Vl

The volume of droplets

Vh

The volume of haze droplet

vt

Terminal velocity of ice crystal

WRF

Weather research and forecasting

YSU

Yonsei University

α

0.647 × 107

β

1.73

Φs

Molal osmotic coefficient

λ

Scale factor

μ

Shape factor

θe

Equivalent potential temperature

υ

Dissociation constant for solute

References

  1. Benson, C. S., 1970: ICE FOG. Weather, 25, 11–18.Google Scholar
  2. Bigg, E. K., 1953: The formation of atmospheric ice crystals by the freezing of droplets. Quart. J. Roy. Meteor. Soc., 79, 510–519.Google Scholar
  3. Bigg, E. K., 1996: Ice forming nuclei in the high Arctic. Tellus, 48, 223–233.Google Scholar
  4. Bowling, S. A., T. Ohtake, and C. S. Benson, 1968: Winter Pressure Systems and Ice Fog in Fairbanks, Alaska. J. Appl. Meteor., 7, 961–968.Google Scholar
  5. Chelf, J. H. and S. T. Martin, 2001: Homogeneous ice nucleation in aqueous ammonium sulfate aerosol particles. Journal of Geophysical Research: Atmospheres, 106, 1215–1226.Google Scholar
  6. Chen, Y., P. J. DeMott, S. M. Kreidenweis, D. C. Rogers, and D. E. Sherman, 2000: Ice Formation by Sulfate and Sulfuric Acid Aerosol Particles under Upper-Tropospheric Conditions. J. Atmos. Sci., 57, 3752–3766.Google Scholar
  7. Cooper, W. A., 1986: Ice Initiation in Natural Clouds. Meteorological Monographs, 21, 29–32.Google Scholar
  8. Curry, J. A., F. G. Meyer, L. F. Radke, C. A. Brock, and E. E. Ebert, 1990: Occurrence and characteristics of lower tropospheric ice crystals in the arctic. Inter. J. Climatology, 10, 749–764.Google Scholar
  9. Curry, J. A., and Coauthors, 2000: FIRE Arctic Clouds Experiment. Bull. Amer. Meteor. Soc., 81, 5–29.Google Scholar
  10. Cziczo, D. J., D. M. Murphy, P. K. Hudson, and D. S. Thomson, 2004: Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE. J. Geophy. Res.: Atmospheres, 109, doi:10.1029/2003jd004032.
  11. DeMott, P. J. and D. C. Rogers, 1990: Freezing Nucleation Rates of Dilute Solution Droplets Measured between −30° and −40°C in Laboratory Simulations of Natural Clouds. J. Atmos. Sci., 47, 1056–1064.Google Scholar
  12. DeMott, P. J., M. P. Meyers, and W. R. Cotton, 1994: Parameterization and Impact of Ice initiation Processes Relevant to Numerical Model Simulations of Cirrus Clouds. J. Atmos. Sci., 51, 77–90.Google Scholar
  13. Girard, E. and J.-P. Blanchet, 2001: Microphysical Parameterization of Arctic Diamond Dust, Ice Fog, and Thin Stratus for Climate Models. J. Atmos. Sci., 58, 1181–1198.Google Scholar
  14. Girard, E. and J.-P. Blanchet, 2001: Simulation of Arctic Diamond Dust, Ice Fog, and Thin Stratus Using an Explicit Aerosol–Cloud–Radiation Model. J. Atmos. Sci., 58, 1199–1221.Google Scholar
  15. Grell G.A., S.E. Peckham, R. Schmitz, S.A. McKeen, G. Frost, W.C. Skamarock, and B Eder. 2005. Fully coupled ‘online’ chemistry in the WRF model. Atmos. Environ., 39:6957–6976.Google Scholar
  16. Gultepe, I., T. Kuhn, M. Pavolonis, C. Calvert, J. Gurka, A. J. Heymsfield, P. S. K. Liu, B. Zhou, R. Ware, B. Ferrier, J. Milbrandt, and B. Bernstein, 2013: ICE FOG IN ARCTIC DURING FRAM-ICE FOG PROJECT: AVIATION AND NOWCASTING APPLICATIONS. Bull. Amer. Meteor. Soc. In Print.Google Scholar
  17. Heymsfield, A., D. Baumgardner, P. DeMott, P. Forster, K. Gierens, and B. Kärcher, 2010: Contrail Microphysics. Bull. Amer. Meteor. Soc., 91, 465–472.Google Scholar
  18. Heymsfield, A. J. and L. M. Miloshevich, 1993: Homogeneous Ice Nucleation and Supercooled Liquid Water in Orographic Wave Clouds. J. Atmos. Sci., 50, 2335-2353.Google Scholar
  19. Heymsfield, A. J., R. P. Lawson, and G. W. Sachse, 1998: Growth of ice crystals in a precipitating contrail. Geophy. Res. Lett., 25, 1335–1338.Google Scholar
  20. Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.Google Scholar
  21. Huffman, P. J. and T. Ohtake, 1971: Formation and Growth of Ice Fog Particles at Fairbanks, Alaska. J. Geophys. Res., 76, 657–665.Google Scholar
  22. Kärcher, B. and U. Lohmann, 2002: A parameterization of cirrus cloud formation: Homogeneous freezing of supercooled aerosols. J. Geophys. Res., 107, AAC 4-1-AAC 4-10.Google Scholar
  23. Kim, C. and S. Yum, 2012: A Numerical Study of Sea-Fog Formation over Cold Sea Surface Using a One-Dimensional Turbulence Model Coupled with the Weather Research and Forecasting Model. Boundary-Layer Meteor., 143, 481–505.Google Scholar
  24. Koop, T., B. Luo, A. Tsias, and T. Peter, 2000: Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature, 406, 611–614.Google Scholar
  25. Kumai, M., 1966: Electron Microscopic Study of Ice-Fog and Ice-Crystal Nuclei in Alaska. J. Meteor. Soc. of Japan., 44, 185–194.Google Scholar
  26. Kunkel, B. A., 1969: Comments on “A Generalized Equation for the Solution effect in Droplet Growth”. J. Atmos. Sci., 26, 1344–1344.Google Scholar
  27. Kunkel, B. A., 1984: Parameterization of Droplet Terminal Velocity and Extinction Coefficient in Fog Models. J. Appl. Meteor., 23, 34–41.Google Scholar
  28. Liu, X., J. E. Penner, S. J. Ghan, and M. Wang, 2007: Inclusion of Ice Microphysics in the NCAR Community Atmospheric Model Version 3 (CAM3). J. Climate, 20, 4526–4547.Google Scholar
  29. Lohmann, U. and B. Kärcher, 2002: First interactive simulations of cirrus clouds formed by homogeneous freezing in the ECHAM general circulation model. J. Geophys. Res., 107, AAC 8-1-AAC 8-13.Google Scholar
  30. Low, R. D. H., 1969: A Generalized Equation for the Solution Effect in Droplet Growth. J. Atmos. Sci., 26, 608–611.Google Scholar
  31. Milbrandt, J. A. and M. K. Yau, 2005: A Multimoment Bulk Microphysics Parameterization. Part II: A Proposed Three-Moment Closure and Scheme Description. J. Atmos. Sci., 62, 3065–3081.Google Scholar
  32. Ohtake, T. and P. J. Huffman, 1969: Visual Range in Ice Fog. J. Appl. Meteor., 8, 499–501.Google Scholar
  33. Prenni, A. J., P. J. Demott, D. C. Rogers, S. M. Kreidenweis, G. M. McFarquhar, G. Zhang, and M. R. Poellot, 2009: Ice nuclei characteristics from M-PACE and their relation to ice formation in clouds. Tellus, 61, 436–448.Google Scholar
  34. Prenni, A. J., P. J. DeMott, S. M. Kreidenweis, J. Y. Harrington, A. Avramov, J. Verlinde, M. Tjernström, C. N. Long, and P. Q. Olsson, 2007: Can Ice-Nucleating Aerosols Affect Arctic Seasonal Climate? Bull. Amer. Meteor. Soc., 88, 541–550.Google Scholar
  35. Pruppacher, H. and J. klett, 1997: Microphysics of cloud and precipitation. Kluwer Academic, 955 pp.Google Scholar
  36. Rogers, R. R. and M. K. Yau, 1989: A short course in cloud physics. 3 ed. Butterworth-Heinemann, 290 pp.Google Scholar
  37. Sassen, K. and G. C. Dodd, 1989: Haze Particle Nucleation Simulations in Cirrus Clouds, and Applications for Numerical and Lidar Studies. J. Atmos. Sci., 46, 3005–3014.Google Scholar
  38. Schmitt, C., M. Stuefer, A. Heymsfield, and C. K. Kim, 2013: The microphysical properties of ice fog measured in urban environments of Interior Alaska. J. Geophy. Res., VOL. 118, 1–12, 2013 doi:10.1002/jgrd.50822.
  39. Schoenberg Ferrier, B., 1994: A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part I: Description. J. Atmos. Sci., 51, 249–280.Google Scholar
  40. Shaw, G. E., 1983: On the Aerosol Particle Size Distribution Spectrum in Alaskan Air Mass Systems: Arctic Haze and Non-Haze Episodes. J. Atmos. Sci., 40, 1313–1320.Google Scholar
  41. Shulski, M. and G. Wendler, 2007: The Climate of Alaska. University of Alaska Press, 216 pp.Google Scholar
  42. Skamarock, W. C., and Coauthours, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475 + STR, 113 pp.Google Scholar
  43. Straka, J., 2009: Cloud and Precipitation Microphysics: principles and parameterization. Cambridge University Press, 392 pp.Google Scholar
  44. Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519–542.Google Scholar
  45. Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Wea. Rev., 136, 5095–5115.Google Scholar
  46. Thuman, W. C. and E. Robinson, 1954: STUDIES OF ALASKAN ICE-FOG PARTICLES. J. of Meteor., 11, 151–156.Google Scholar
  47. Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization part I: the single-moment scheme. Atmos. Res., 38, 29–62.Google Scholar
  48. Welch, R. M., M. G. Ravichandran, and S. K. Cox, 1986: Prediction of Quasi-Periodic Oscillations in Radiation Fogs. Part I: Comparison of Simple Similarity Approaches. J. Atmos. Sci., 43, 633–651.Google Scholar
  49. Young, K. C., 1974: A Numerical Simulation of Wintertime, Orographic Precipitation: Part I. Description of Model Microphysics and Numerical Techniques. J. Atmos. Sci., 31, 1735–1748.Google Scholar
  50. Zhou, B., 2011: Introduction to A New Fog Diagnostic Scheme. NCEP Office Note 466.Google Scholar
  51. Zhou, B., and B. S. Ferrier, 2008: Asymptotic Analysis of Equilibrium in Radiation Fog. J. Appl. Meteor. and Climat., 47, 1704–1722.Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Chang Ki Kim
    • 1
    • 3
  • Martin Stuefer
    • 1
  • Carl G. Schmitt
    • 2
  • Andrew Heymsfield
    • 2
  • Greg Thompson
    • 2
  1. 1.Geophysical InstituteUniversity of Alaska FairbanksFairbanksUSA
  2. 2.National Center for Atmospheric ResearchBoulderUSA
  3. 3.Department of Atmospheric SciencesUniversity of ArizonaTucsonUSA

Personalised recommendations