Skip to main content
Log in

Imprint of Climate Variability on Mesozoic Fossil Tree Rings: Evidences of Solar Activity Signals on Environmental Records Around 200 Million Years Ago?

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Evidence of the solar activity modulation of the Earth’s climate has been observed on several parameters, from decadal to millennial time scales. Several proxies have been used to reconstruct the paleoclimate as well as the solar activity. The paleoclimate reconstructions are based on direct and/or indirect effects of global and regional climate conditions. The solar activity reconstructions are based on the production of the 14C isotope due to the interaction of cosmic ray flux and the Earth’s atmosphere. Because trees respond to climate conditions and store 14C, they have been used as proxies for both for climate and solar activity reconstructions. The imprints of solar activity cycles dating back to 10,000 years ago have been observed on tree-ring samples using 14C data, and those dating back to 20 million years ago have been analyzed using fossil tree-growth rings. All this corresponds to the Cenozoic era. However, solar activity imprints on tree rings from earlier than that era have not been investigated yet. In this work, we showed that tree rings from the Mesozoic Era (of ~200 million years ago) recorded 11- and 22-year cycles, which may be related to solar activity cycles, and that were statistically significant at the 95 % confidence level. The fossil wood was collected in the southern region of Brazil. Our analysis of the fossils' tree-ring width series power spectra showed characteristics similar to the modern araucaria tree, with a noticeable decadal periodicity. Assuming that the Earth’s climate responds to solar variability and that responses did not vary significantly over the last ~200 million years, we conclude that the solar–climate connection was likely present during the Mesozoic era.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ammons, R., A Ammons, and R.B. Ammons. 1983. Solar activity-related quasi-cycles in tertiary tree-ring records: evidence and methodological studies. In: B.M. McCormac, ed. Weather and Climate Responses to Solar Variations. Colorado Associated University Press, Boulder, CO: p. 535–543.

  • Bolzon, R.T.: A lignitafoflora mesozóica do Rio Grande do Sul (Brasil): métodos de estudo e considerações sobre tafonomia, paleoecologia e paleoclimatologia, M. S. thesis, 142 pp., Universidade Federal do Rio Grande do Sul at Porto Alegre, 3 may, 1993.

  • Carslaw, K. S., et al. Cosmic rays, clouds, and climate, Science, 298, 1732–1737, 2002.

  • Cubasch, U. and Voss, R. The influence of total solar irradiance on climate, Space Sci. Rev. 94, pp. 185–198, 2000.

  • Currie, R. G. (1993) Lunar-solar 18.6 and 10-11 year signal in USA air temperature record. International Journal of Climatology 13, 31–50.

  • Damon, P. E., Eastone, C. J., Hughes, M. K., Kalin, R. M., Long, A., Peristykh, A. N. Secular variation of D 14 C during the medieval solar maximum: a progress report. Radiocarbon, 40(1):343–350, 1998.

  • Dutra, T. L., Boardman, D. R. and Souza-Lima, W.: Os vegetais: as gimnospermas. Fundação Paleontológica Phoenix, http://www.infonet.com.br/phoenix/, ano 4, N. 46, 2002.

  • Eddy, J. A.: The Maunder minimum, Science, 192, 1189–1192, 1976.

  • Harrison, R. G., and Carslaw, K. S. Ion-aerosol-cloud processes in the lower atmosphere, Rev. Geophys., 41(3), 1012, doi:10.1029/2002RG000114, 2003.

  • Hoyt, D. V. and Schatten, K. H.: The Role of Sun in Climate Change, Oxford University Press, 1997.

  • Jackman, C. H., M. T. DeLand, G. J. Labow, E. L. Fleming, D. K. Weisenstein, M. K. W. Ko, M. Sinnhuber, and Russell, J. M. Neutral atmospheric influences of the solar proton events in October – November 2003, J. Geophys. Res., 110, A09S27, doi:10.1029/2004JA010888, 2005.

  • Kious, W. J., and Tilling, R. I.: This dynamic Earth: The story of plate tectonics: Reston, Va., U.S. Geological Survey General Interest Publication, 77 p, 1996. (Also available online at http://pubs.usgs.gov/publications/text/dynamic.html).

  • Kurths, J., Spiering, C., Müller-Stoll, W. and Striegler, U.: Search for solar periodicities in Miocene tree ring widths. Terra Nova, 5:359–363, 1993.

  • Lean, J., and Rind, D. Earth’s response to a variable Sun. Science, 292, 234–236, 2001. doi:10.1126/science.1060082.

  • Liang Eryuan, Shao Xuemei, Liu Hongyan, Eckstein Dieter. Tree-ring based PDSI reconstruction since AD 1842 in the Ortindag Sand Land, east Inner Mongolia. Chinese Science Bulletin, 52 (19), 2715–2721, 2007.

  • Marsh, N., and Svensmark, H. Cosmic rays, clouds, and climate, Space Sci. Rev., 94, 215–230, 2000.

  • Minello, L. F.: As florestas petrificadas da Região de São Pedro do Sul e Mata, RS: introdução estudo dos processos de fossilização e análise morfológica; legislação pertinente e análise do desenvolvimento da consciência preservacionista, M. S. thesis, 484 pp., Universidade Federal do Rio Grande do Sul at Porto Alegre, 19 July, 1993.

  • Moraal, H.; Muscheler, R.; du Plessis, L.; Kubik, P.W.; Beer, J.;McCracken, K.G. and McDonald, F.B. 10 Be concentration in the ice shelf of Queen Maud Land, Antarctica. South African Journal of Science 101, 299–301, 2005.

    Google Scholar 

  • Muraki, Y.; Masuda, K.; Nagaya, K.; Wada, K. and Miyahara, H. Solar variability and width of tree ring. Astrophys. Space Sci. Trans., 7, 395 401, 2011.

  • Murphy, J. O.: Australian tree ring chronologies: a proxy data for solar variability, Proc ASA, 8(3), 292–297, 1990.

  • Newkirk, Jr. G.: Solar variability and time scales of 105 years to 109.6 years, Proc. Conf. Ancient Sun (1980), Pag 293–320, USA, 1980.

  • Nordemann, D. J. R., Rigozo, N. R. and Faria, H. H. Solar activity and El-Niño signals observed in Brazil and Chile tree ring records. Advances in Space Research, v.35, p.891–896, 2005.

  • Prasad, S., Vos, H., Negendank, J.F.W., Waldmann, N., Goldstein, S., Stein, M., 2004. Evidence from Lake Lisan of solar influence on decadal- to centennial-scale climate variability during marine oxygen isotope state 2. Geology 32 (7), 581–584.

    Google Scholar 

  • Prestes, A.; Rigozo, N. R.; Nordemann, D. J. R.; Wrasse, C. M.; Souza Echer, M.P.; Echer, E.; da Rosa, M. B.; Rampelotto, P. H. Sun earth relationship inferred by tree growth rings in conifers from Severiano de Almeida, Southern Brazil. Journal of Atmospheric and Solar-Terrestrial Physics, 73, 1587–1593, 2011.

  • Raspopov, O. M., Dergachev, V. A.; Ogurtsov, M. G.; Kolström, T.; Jungner, H.; and Dmitriev, P. B. Variations in climate parameters at time intervals from hundreds to tens of millions of years in the past and its relation to solar activity. Journal of Atmospheric and Solar-Terrestrial Physics 73, 388–399, 2011.

  • Raspopov, O. M.; Dergachev, V. A.; Shumilov, O. I.; Kolström, T.; Lindholm, M.; Meriläinen, J.; Eggertsson, O.; Vasiliev, S. S.; Kuzmin, A. V.; Kirtsidely, I. Yu. and Kasatkina, E. A. 2001. Dendrochronological evidence of long-term variations in solar activity and climate. in Kaennel Dobbertin, M., Bräker, O. U. (Editors), International Conference Tree Rings and People, Swiss Federal Research Institute—WSL, Davos Switzerland, Abstracts.

  • Rigozo, N. R., Nordemann, D. J. R., E., Zanandea, A. and Gonzalez,W. D.: Solar variability effects by tree-ring data wavelets analysis. ADV SPACE RES, 29(12), 1985–1988, 2002.

  • Rigozo, N. R., Nordemann, D. J. R., Echer, E. and Vieira, L. E. A.: Search for Solar Periodicities in Tree-Ring Widths from Concoódia (S.C., Brazil). PURE APPL GEOPHYS, 161, 221–233, 2004.

  • Rigozo, N. R., Echer, E., Nordemann, D. J. R., Vieira, L. E. A. and Faria, H. H. F.: Comparative study between four classical spectral analysis methods. APPL MATH COMPUT, 168, 411–430, 2005.

  • Rigozo, N. R., Nordemann, D. J. R., Echer, E., da Silva, H. E., Echer, M. P. S. and Prestes, A.: Solar and climate imprint differences in tree ring width from Brazil and Chile. J Atmos Sol-Terr Phy, 69, 449–458, 2007a.

  • Rigozo, N. R., Nordemann, D. J. R., Echer, M. P. S., Echer, E., da Silva, H. E., Prestes, A. and Guarnieri, F. L: Solar activity imprints in tree ring width from Chile (1610-1991). J Atmos Sol-Terr Phy, 69, 1049–1056, 2007b.

  • Rigozo, N. R., Prestes, A., Nordemann, D. J. R., Evangelista, H., E Cher, M. P. S., Echer, E. Solar Maximum Epoch Imprints in Tree-Ring Width From Passo Fundo, Brazil (17412004). Journal of Atmospheric and Solar-Terrestrial Physics., v.70, p.1025–1033, 2008a.

  • Rigozo, N. R., Evangelista, Heitor, Nordemann, Daniel Jean Roger, Echer, Ezequiel, Echer, Mariza Pereira De Souza, Prestes, Alan. The Medieval and Modern Maximum Solar Activity Imprints in Tree-ring data from Chile and Stable Isotope Records from Antarctica and Peru. Journal of Atmospheric and Solar-Terrestrial Physics., v.70, p.1012–1024, 2008b.

  • Roig, F.A., Le-Quesne, C., Boninsegna, J.A., Briffa, K.R., Lara, A., Grudd, H., Jones, P.D., Villagrán, C. Climate variability 50,000 years ago in mid-latitude Chile as reconstructed from tree rings. Nature, v. 410, p. 567–570, 2001.

  • Solanki, S. K. and Krivova, N. A. Can solar variability explain global warming since 1970? J. Geophys. Res., vol. 108, no. A5, 1200, doi:10.1029/2002JA009753, 2003.

  • Sommer, M. G. and Scherer, C. M. S.: Sítios Paleobotânicos do Arenito Mata nos Municípios de Mata e São Pedro do Sul, RS. In: Schobbenhaus, C.; Campos, D. A.; Queiroz, E. T.; Winge, M.; Berbert-Born, M. (Edit.) Sítios Geológicos e Paleontológicos do Brasil. Publicado na Internet no endereço http://www.unb.br/ig/sigep/sitio009/sitio009.htm, 1999.

  • Sommer, M. G., Cazzulo-Klepzig, M., Bolzon, R. T., Alves, L. S. R. and, R.: As floras Triássicas do Rio Grande do Sul: Flora Dicroidium e Flora Araucarioxylon. In: Holz, M. e De Ros, L. F.(eds.), Paleontologia do Rio Grande do Sul, 85–106, 2000.

  • Stuiver, M. and Quay, P. D. Changes in atmospheric carbon-14 attributed to a variable Sun. Science, 207(4426):11–19, 1980.

    Google Scholar 

  • Svensmark, H., and E. Friis Christensen. Variation of cosmic ray flux and global cloud coverage—A missing link in solar-climate relationships, J. Atmos. Sol. Terr. Phys., 59, 1225–1232, 1997.

  • Usoskin, I. G. and Kromer, B. Reconstruction of the 14c production rate from measured relative abundance. Radiocarbon, Vol 47, N. 1, p 31–37, 2005.

  • Vaganov, E. A., Briffa, K. R., Naurzbaev, M. M., Schweingruber, F. H., Shiyatov, S. G. and Shishov, V. V. Long-term climatic changes in the arctic region of the Northern Hemisphere. Doklady Earth Sciences 375: 1314–1317, 2000.

  • Vasiliev, C. C., Dergachev, V. A., Raspopov, O. M., 2004. Reconstruction of Greenland temperature for the last millennium, solar activity and North-Atlantic oscillations. Geomagnetism and Aeronomy 44 (1), 123–228.

  • Vieira, L. E. A. and da Silva, L. A. Geomagnetic modulation of clouds effects in the Southern Hemisphere Magnetic Anomaly through lower atmosphere cosmic ray effects. Geophys. Res. Lett., vol. 33, L14802, doi:10.1029/2006GL026389, 2006.

Download references

Acknowledgments

The authors wish to thank CRS and LACESM for logistic support with our field work, and CNPq, CAPES and FAPESP for grants supporting this research: A. Prestes FAPESP—(2009/02907-8) and CNPq (309092/2010-8); N. R. Rigozo—CNPq (APQ 470605/2012-0 and research productivity, 303368/2012-8); M. P Souza Echer—CNPq (304368/2013-0); E. Echer CNPQ/PQ (301233/2011-0) e FAPESP (2012/066734).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Rigozo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prestes, A., Rigozo, N.R., Nordemann, D.J.R. et al. Imprint of Climate Variability on Mesozoic Fossil Tree Rings: Evidences of Solar Activity Signals on Environmental Records Around 200 Million Years Ago?. Pure Appl. Geophys. 171, 1983–1991 (2014). https://doi.org/10.1007/s00024-013-0726-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-013-0726-2

Keywords

Navigation