Advertisement

Pure and Applied Geophysics

, Volume 170, Issue 12, pp 2273–2282 | Cite as

Sea Ice Dynamics Induced by External Stochastic Fluctuations

  • Dmitri V. AlexandrovEmail author
  • Irina A. Bashkirtseva
  • Alexey P. Malygin
  • Lev B. Ryashko
Article

Abstract

The influence of stochastic fluctuations in the atmosphere and in the ocean caused by different occasional phenomena (noises) on dynamic processes of sea ice growth with a mushy layer is studied. It is shown that atmospheric temperature variances substantially increase the sea ice thickness, whereas dispersion variations of turbulent flows in the ocean to a great extent decrease the ice content produced by false bottom evolution.

Keywords

Sea ice mushy layer false bottom stochastic fluctuations nonlinear dynamics 

Notes

Acknowledgments

We are grateful for partial support from the Federal Target Program “Scientific and scientific-pedagogical personnel of innovative Russia” in 2009–2013 and the Russian Foundation for Basic Research (Project No. 11-01-00137).

References

  1. Aagard, K., and Carmack, E. (1994). The arctic ocean and climate: a perspective, in The Polar Regions and Their Role in Shaping the Global Environment, ed by Johannessen, O.M., Muench, R.D., and Overland, J.E. Geophys. Monogr. Ser. 85, AGU, pp. 5–20.Google Scholar
  2. Alexandrov, D.V., and Malygin, A.P. (2006a). Analytical description of seawater crystallization in ice fissures and their influence on heat exchange between the ocean and the atmosphere. Dokl. Earth Sci. 411A, 1407–1411.Google Scholar
  3. Alexandrov, D.V., and Malygin, A.P. (2006b). Self-similar solidification of an alloy from a cooled boundary. Int. J. Heat Mass Transf. 49, 763–769.Google Scholar
  4. Alexandrov, D.V., Malygin, A.P., and Alexandrova, I.V. (2006). Solidification of leads: approximate solutions of non-linear problem. Ann. Glaciol. 44, 118–122.Google Scholar
  5. Alexandrov, D.V., and Malygin, A.P. (2011a). Convective instability of directional crystallization in a forced flow: The role of brine channels in a mushy layer on nonlinear dynamics of binary systems. Int. J. Heat Mass Transf. 54, 1144–1149.Google Scholar
  6. Alexandrov, D.V., and Malygin, A.P. (2011b). Nonlinear dynamics of phase transitions during seawater freezing with a false bottom formation. Oceanology 51, 940–948.Google Scholar
  7. Alexandrov, D.V., and Nizovtseva, I.G. (2008). To the theory of underwater ice evolution, or nonlinear dynamics of “false bottoms”. Int. J. Heat Mass Transf. 51, 5204–5208.Google Scholar
  8. Alexandrov, D.V., Nizovtseva, I.G., Lee, D., and Huang, H.-N. (2010). Solidification from a cooled boundary with a mushy layer under conditions of nonturbulent and turbulent heat and mass transfer in the ocean. Int. J. Fluid Mech. Res. 37, 1–14.Google Scholar
  9. Anishchenko, V.S., Astakhov, V.V., Neiman, A.B., Vadivasova, T.E., and Schimansky-Geier, L., Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Development (Springer-Verlag, Berlin/Heidelberg 2007).Google Scholar
  10. Badgley, F.J. (1966). Heat budget at the surface of the Arctic Ocean, in Proceedings of Symposium on the Arctic Heat Budget and Atmospheric Circulation, ed by Fletcher, J.O. Santa Monica, CA, Rand Corporation, pp. 267–277.Google Scholar
  11. Bashkirtseva, I., and Ryashko, L. (2009). Constructive analysis of noise-induced transitions for coexisting periodic attractors of Lorenz model. Phys. Rev. E 79, 041106-041114.Google Scholar
  12. Bashkirtseva, I., Chen, G., and Ryashko, L. (2012). Analysis of noise-induced transitions from regular to chaotic oscillations in the Chen system. Chaos 22, 033104.Google Scholar
  13. Bell, R.E. et al. (2011). Widespread persistent thickening of the East Antarctic ice sheet by freezing from the base. Science 331, 1592–1595.Google Scholar
  14. Buyevich, Yu. A., Alexandrov, D.V., Mansurov, V.V., Macrokinetics of crystallization (Begell House, New York-Wallingford 2001) 183.Google Scholar
  15. Eicken, H. (1994). Structure of under-ice melt ponds in the central Arctic and their effect on the sea-ice cover. Limnol. Oceanogr. 39, 682–694.Google Scholar
  16. Eicken, H., Krouse, H.R., Kadko, D., and Perovich, D.K. (2002). Tracer studies of pathways and rates of meltwater transport through Arctic summer sea ice. J. Geophys. Res. 107, 8046.Google Scholar
  17. Fowler, A.C. (1985). The formation of freckles in binary alloys. IMA J. Appl. Maths. 35, 159–174.Google Scholar
  18. Gardiner, C., A handbook for the natural and social sciences (Springer, Series in Senergetics 2009) 447.Google Scholar
  19. Hanson, A.M. (1965). Studies of the mass budget of Arctic pack-ice floes. J. Glaciol. 5, 701–709.Google Scholar
  20. Hayes, J., and Morison, J. (2008). Ice-ocean turbulent exchange in the Arctic summer measured by an autonomous underwater vehicle. Limnol. Oceanogr. 53, 2287–2308.Google Scholar
  21. Hills, R.N., Loper, D.E., and Roberts, P.H. (1983). A thermodynamically consistent model of a mushy zone. Q. J. Appl. Math. 36, 505–539.Google Scholar
  22. Horsthemke, W., and Lefever, R., Noise-Induced Transitions (Springer, Berlin 1984).Google Scholar
  23. Huppert, H.E., and Worster, M.G. (1985). Dynamic solidification of a binary melt. Nature 314, 703–707.Google Scholar
  24. Ivantsov, G.P. (1951). Diffusional supercooling during crystallization of a binary alloy. Dokl. Akad. Nauk SSSR 81, 179–182.Google Scholar
  25. Jeffries, M.O., Schwartz, K., Morris, K., Veazey, A.D., Krouse, H.R., and Gushing, S. (1995). Evidence for platelet ice accretion in Arctic sea ice development. J. Geophys. Res. 100, 10,905–10,914.Google Scholar
  26. L’Hélvéder, B., and Houssais, M.-N. (2001). Investigating the variability of the Arctic sea ice thickness in response to a stochastic thermodynamic atmospheric forcing. Climate Dynamics, 17, 107–125.Google Scholar
  27. Martin, S., and Kauffman, P. (1974). The evolution of under-ice melt ponds. J. Fluid Mech. 64, 507–527.Google Scholar
  28. Nansen, F., Farthest North (Harper and Brothers Rublishers, New York 1897) 714.Google Scholar
  29. Notz, D., McPhee, M.G., Worster, M.G., Maykut, G.A., Schlünzen, K.H., and Eicken, H. (2003). Impact of underwater-ice evolution on Arctic summer sea ice. J. Geophys. Res. 108, 3223.Google Scholar
  30. Notz, D., Wettlaufer, J.S., Worster, M.G. (2005). A non-distructive method for measuring the salinity and solid fraction of growing sea ice in situ. J. Glaciol. 51, 159–166.Google Scholar
  31. Perovich, D.K., Grenfell, T.C., Richter-Menge, J.A., Light, B., Tucker, W.B., and Eicken, H. (2003). Thin and thinner: ice mass balance measurements during SHEBA. J. Geophys. Res. 108, 8050.Google Scholar
  32. Perovich, D.K., and Richter-Menge, J.A. (2000). Ice growth and solar heating in springtime leads. J. Geophys. Res. 105, 6541–6548.Google Scholar
  33. Perovich, D.K., and Richter-Menge, J.A. (2009). Loss of sea ice in the Arctic. Annu. Rev. Marine Sci. 1, 417–441.Google Scholar
  34. Rahmstorf, S. (1995). Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378, 145–149.Google Scholar
  35. Stefan, J. (1889a). Über einige Probleme der Theorie der Wärmeleitung. Sitzungsberichte de Mathematisch–Naturawissenschaftlichen Classe der Kaiserlichen, Akademie der Wissenschaften 98(2a), 473–484.Google Scholar
  36. Stefan, J. (1889b). Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere. Sitzungsberichte de Mathematisch–Naturawissenschaftlichen Classe der Kaiserlichen, Akademie der Wissenschaften 98(2a), 965–983.Google Scholar
  37. Stefan, J. (1891). Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere. Ann. Der Physik u. Chem., Neue Folge 42, 269–286.Google Scholar
  38. The LeadEx Group (1993). The LeadEx experiment. EOS Trans. AGU 74, 393, 396–397.Google Scholar
  39. Timmermann, R., Beckmann, A., and Hellmer, H.H. (2002). Simulations of ice-ocean dynamics in the Weddell Sea 1. Model configuration and validation. J. Geophys. Res. 107, 3024.Google Scholar
  40. Uusikivi, J., Ehn, J., and Granskog, M.A. (2006). Direct measurements of turbulent momentum, heat and salt fluxes under landfast ice in the Baltic Sea. Ann. Glaciol. 44, 42–46.Google Scholar
  41. Wadhams, P. (1988). The underside of Arctic sea ice imaged by sidescan sonar. Nature 333, 161–164.Google Scholar
  42. Wettlaufer, J.S., Worster, M.G., and Huppert, H.E. (1997). Natural convection during solidification of an alloy from above with application to the evolution of sea ice. J. Fluid Mech. 344, 291–316.Google Scholar
  43. Wettlaufer, J.S., Worster, M.G., and Huppert, H.E. (2000). Solidification of leads: theory, experiment, and field observations. J. Geophys. Res. 105, 1123–1134.Google Scholar
  44. Worster, M.G. (1986). Solidification of an alloy from a cooled boundary. J. Fluid. Mech. 167, 481–501.Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Dmitri V. Alexandrov
    • 1
    Email author
  • Irina A. Bashkirtseva
    • 1
  • Alexey P. Malygin
    • 1
  • Lev B. Ryashko
    • 1
  1. 1.Department of Mathematical PhysicsUral Federal UniversityEkaterinburgRussian Federation

Personalised recommendations