Skip to main content

Automatic Recognition of Landslides Based on Neural Network Analysis of Seismic Signals: An Application to the Monitoring of Stromboli Volcano (Southern Italy)

Abstract

In the last 9 years, the amount and the quality of geophysical and volcanological observations of Stromboli's' activity have undergone a marked increase. This new information highlighted that the landslides on the Sciara del Fuoco flank are tightly linked to the volcanic activity. Actually, at the beginning of the December 28, 2002, effusive eruption, the seismic monitoring network was less dense than now, and therefore it is not known if there was an increase in the landslide rate before the eruption. Despite this, it is known that a big landslide occurred 2 days after the beginning of the eruption which caused a tsunami (December 30, 2002). More recently, the effusive eruption in February 2007 was preceded by an increase in landslides on the Sciara del Fuoco flank, which were recorded by the seismological monitoring system that had been improved after the 2002–2003 crisis. These episodes led us to believe that monitoring the Sciara del Fuoco flank instability is an important topic, and that landslides might be significant short-term precursors of effusive eruptions at the Stromboli volcano. To automatically detect landslide signals, we have developed a specialized neural algorithm. This can distinguish between landslides and the other types of seismic signals usually recorded at the Stromboli volcano (i.e., explosion quakes and volcanic tremor). The discrimination results show an average performance of 98.67 %. According to the experience of the crisis of 2007, to identify changes that can be considered as precursors of effusive eruptions, we set up an automatic decision-making method based on the neural network responses. This method can operate on a continuous data stream. It calculates a landslide percentage index (LPI) that depends on the number of records that are classified by the net as landslides over a given time interval. We tested the method on February 27, 2007, including the beginning of the effusive phase. The index showed an increase as early as at 09:00 UTC on that day and reached its maximum value (100 %) at 12:00, about 40 min before the onset of the eruption. After the beginning of the effusive phase, the index remains high due to the blocks that roll down along the slope from the front of the lava flow. On the basis of these tests, we propose a decision-making method that is able to recognize a trend in the LPI similar to that of 2007 eruption, allowing the identification of precursors of effusive phases at the Stromboli volcano.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Auger E., D’Auria L., Martini M., Chouet B., Dawson P. (2006) Real-time monitoring and massive inversion of source parameters of very long period seismic signals: An application to Stromboli Volcano, Italy, Geoph. Res. Lett. Vol. 33, L04301, doi:10.1029/2005GL024703.

  2. Barberi F., Civetta L., Rosi M., Scandone R. (2009) Chronology of the 2007 eruption of Stromboli and the activity of the Scientific Synthesis Group, Journal of Volcanology and Geothermal Research, Vol. 182 (2009), 123–130.

  3. Baldi P., Fabris M., Marsella M., Monticelli R. (2005) Monitoring the morphological evolution of the Sciara del Fuoco during the 2002–2003 Stromboli eruption using multi-temporal photogrammetry, ISPRS Journal of Photogrammetry & Remote Sensing 59 (2005) 199–211.

  4. Barabino N., Pallavicini M., Petrolini A., Pontil M., Verri A. (1999) Support Vector Machines vs Multi-Layer Perceptron in Particle Identification, ESANN’1999 proceedings—European Symposium on Artificial Neural Networks Bruges (Belgium), 21-23 April 1999, D-Facto public., ISBN 2-600049-9-X, pp. 257–262.

  5. Bishop C. (1995) Neural Networks for pattern recognition, Oxford University Press. 500 pp.

  6. Calvari S., Spampinato L., Lodato L., Harris A.J.L., Patrick M.R., Dehn J., Burton M.R. and Andronico D. (2005) Chronology and complex volcanic processes during the 2002-2003 flank eruption at Stromboli volcano (Italy) reconstructed from direct observations and surveys with a handheld thermal camera, J. Geoph. Res., Vol. 110, B02201, doi:10.1029/2004JB003129.

  7. Casagli N., Tibaldi A., Merri A., Del Ventisette C., Apuani T., Guerri L., Fortuny-Guasch J., Tarchi D. (2009) Deformation of Stromboli Volcano (Italy) during the 2007 eruption revealed by radar interferometry, numerical modelling and structural geological field data, Journal of Volcanology and Geothermal Research 182 (2009) 182–200, Elsevier B.V., doi:10.1016/j.jvolgeores.2009.01.002.

  8. Cercone J.M. and Martin J.R. (1994) An application of neural networks to seismic signal discrimination, Phillips Laboratory, report no. 3, PL-TR-94-2178, Hanscon, AFB, Massachusetts.

  9. Chouet B., Dawson P., Ohminato T., Martini M., Saccorotti G., Giudicepietro F., De Luca G., Milana G. and Scarpa R. (2003) Source mechanisms of explosions at Stromboli Volcano, Italy, determined from moment-tensor inversions of very-long-period data, J. Geoph. Res., Vol. 108 (B1).

  10. D’Auria L., Giudicepietro F., Martini M. and Peluso R. (2006) Seismological insight into the kinematics of the 5 April 2003 vulcanian explosion at Stromboli volcano (Southern Italy), Geophys. Res. Lett., Vol. 33, L08308, doi:10.1029/2006GL026018.

  11. D’Auria L., Martini M., Auger E., Giudicepietro F., De Cesare W., Scarpato G. (2004) The EOLO system for automatic seismic monitoring of Stromboli, Incontro scientifico: L’eruzione di Stromboli (28 Dicembre 2002-20 Luglio 2003), Catania, 20-21 Maggio 2004.

  12. De Cesare W., Orazi M., Peluso R., Scarpato G., Caputo A., D’Auria L., Giudicepietro F., Martini M., Buonocunto C., Capello M., Esposito A. M. (2009) The broadband seismic network of Stromboli volcano, Italy, Seismol. Res. Lett., Vol. 80, 435–439, doi:10.1785/gssrl.80.3.435.

  13. Del Pezzo E., Esposito A., Giudicepietro F., Marinaro M., Martini M. and Scarpetta S. (2003) Discrimination of earthquakes and underwater explosions using neural networks, Bull. Seism. Soc. Am. 93, 215–223.

  14. Dowla F.U., Taylor S.R. and Anderson R.W. (1990) Seismic discrimination with artificial neural networks: preliminary results with regional spectral data, Bull. Seism. Soc. Am. 80, 1346–1373.

  15. Dowla F.U. (1995) Neural networks in seismic discrimination, in Monitoring a Comprehensive Test Ban Treaty, E.S. Husebye and A.M. Dainty (Editors), NATO ASI, Series E, 303, Kluwer, Dordrecht, The Netherlands, 777–789.

  16. Hartse H. E., Phillips W. S., Fehler M. C., and House L. S. (1995) Single-station spectral discrimination using coda waves, Bull. Seism. Soc. Am. 85, 1464–1474.

  17. Esposito A. M., Giudicepietro F., Scarpetta S., D’Auria L., Marinaro M., Martini M. (2006) Automatic discrimination among landslide, explosion-quake and microtremor seismic signals at Stromboli volcano using neural networks, Bull. Seismol. Soc. Am. 96, 1230–1240, doi:10.1785/0120050097.

  18. Falsaperla S., Neri M., Pecora E., Spampinato S. (2006) Multidisciplinary study of flank instability phenomena at Stromboli volcano, Italy, Geoph. Res. Lett., Vol. 33, L09304, 4 PP., doi:10.1029/2006GL025940.

  19. Giacco F., Esposito A.M., Scarpetta S., Giudicepietro F. and Marinaro M. (2009) Support Vector Machines and MLP for automatic classification of seismic signals at Stromboli volcano, in Neural Nets WIRN09 Proceedings of the 19th Italian Workshop on Neural Nets, Vietri sul Mare, Salerno, Italy, May 28-30, 2009, B. Apolloni et al. (Eds.), IOS Press, 2009.

  20. Gitterman Y., Pinky V., and Shapira A. (1999) Spectral discrimination analysis of Eurasian nuclear tests and earthquakes recorded by the Israel seismic network and the NORESS array, Phys. Earth. Planet. Interiors 113, 111–129.

  21. Giudicepietro F., D’Auria L., Martini M., Caputo T., Peluso R., De Cesare W., Orazi M., Scarpato G. (2009) Changes in the VLP seismic source during the 2007 Stromboli eruption, Journal of Volcanology and Geothermal Research Vol. 182 (2009), 162–171, doi:10.1016/j.jvolgeores.2008.11.008.

  22. Joswig M. (1990) Pattern recognition for earthquake detection, Bull. Seism. Soc. Am. 80, 170–186.

  23. Langer H., Falsaperla S., Masotti M., Campanini R., Spampinato S. (2009) Synopsis of supervised and unsupervised pattern classification techniques applied to volcanic tremor data atMt Etna, Italy, Geophys. J. Int. (2009) 178, 1132–1144, doi:10.1111/j.1365-246X.2009.04179.x.

  24. La Rocca M., Galluzzo D., Saccorotti G., Tinti S., Cimini G. B. and Del Pezzo E. (2004) Seismic Signals Associated with Landslides and with a Tsunami at Stromboli Volcano, Italy, Bull. Seismol. Soc. Am. 94, no. 5, 1850–1867, doi:10.1785/012003238.

  25. Makhoul J. (1975) Linear prediction: a tutorial review, Proc. IEEE 63, 561–580.

  26. Martini M., Giudicepietro F., D’Auria L., Esposito A.M., Caputo T., Curciotti R., De Cesare W., Orazi M., Scarpato G., Caputo A., Peluso R., Ricciolino P., Linde A., Sacks S. (2007) Seismological monitoring of the February 2007 effusive eruption of the Stromboli volcano, Ann. Geophys. Vol. 50, N. 6, 775–788.

  27. Masotti M., Falsaperla S., Langer H., Spampinato S., and Campanini R. (2006) Application of Support Vector Machine to the classification of volcanic tremor at Etna, Italy, Geophys. Res. Lett., 33, L20304, doi:10.1029/2006GL027441.

  28. Nunnari G., Puglisi G. and Spata A. (2008) A Warning System for Stromboli Volcano Based on Statistical Analysis, Pure appl. geophys. 165 (2008) 1619–1641, 0033-4553/08/081619-23, Birkha¨user Verlag, Basel, 2008, doi:10.1007/s00024-008-0392-y.

  29. Osowski S., Siwek K., Markiewicz T. (2004) MLP and SVM networks: a comparative study, Proceedings of the Nordic Signal Processing Symposium—NORSIG 2006—NORSIG, 2004, doi:10.1109/NORSIG.2004.250120.

  30. Pino N. A. and Boschi E. (2009) Seismic detection of island trapped sea waves from a landslide-generated tsunami at Stromboli (Italy), Geophysical Research Letters, Vol. 36, L09305, doi:10.1029/2009GL037550.

  31. Puglisi G., A. Bonaccorso, M. Mattia, M. Aloisi, A. Bonforte, O. Campisi, M. Cantarero, G. Falzone, B. Puglisi, M. Rossi (2005) New integrated geodetic monitoring system at Stromboli volcano (Italy), Engineering Geology 79 (2005) 13-31, Published by Elsevier B.V., doi:10.1016/j.enggeo.2004.10.013.

  32. Ripepe M., Delle Donne D., Lacanna G., Marchetti E., Ulivieri G. (2009) The onset of the 2007 Stromboli effusive eruption recorded by an integrated geophysical network, Journal of Volcanology and Geothermal Research, Vol. 182 (2009), 131–136.

  33. Rowe C. A., Thurber C. H., and White R. A. (2004). Dome growth behaviour at Soufriere Hills volcano, Montserrat, revealed by relocation of volcanic event swarms, 1995–1996, J. Volc. Geotherm. Res. 134, 199–221.

  34. Scarpetta S., Giudicepietro F., Ezin E.C., Petrosino S., Del Pezzo E., Martini M. and Marinaro M. (2005) Automatic Classification of seismic signals at Mt. Vesuvius Volcano, Italy using Neural Networks, Bull. Seism. Soc. Am., Vol. 95, 185–196.

  35. Schffolkopf, B. and Smola A.J. (2002) Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond, MIT Press.

  36. Tibaldi A. (2001) Multiple sector collapses at stromboli volcano, Italy: how they work, Bulletin of Volcanology Vol. 63, N. 2-3, 112–125, doi:10.1007/s004450100129.

  37. Tiira T. (1999) Detecting teleseismic events using artificial neural networks, Comp. Geosci. Vol. 25, 929–939.

  38. Tinti S., Manucci A., Pagnoni G., Armigliato A., Zaniboni F. (2005) The 30 December 2002 landslide-induced tsunamis in Stromboli: sequence of the events reconstructed from the eyewitness accounts, Natural Hazards and Earth System Science 5, 6 (2005) 763–775.

  39. Tinti S., Pagnoni G. and Zaniboni F. (2006) The landslides and tsunamis of the 30th of December 2002 in Stromboli analysed through numerical simulations, Bulletin of Volcanology Vol. 68, N. 5, 462–479, doi:10.1007/s00445-005-0022-9.

  40. Wang J. and Teng T. (1995) Artificial neural network based seismic detector, Bull. Seism. Soc. Am. Vol. 85, 308–319.

  41. Young S. J. (1993) HTK: Hidden Markov Model Toolkit V1.5, Cambridge University Engineering Department Speech Group and Entropic Research Laboratories, Inc., Washington, D.C.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Flora Giudicepietro.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Esposito, A.M., D’Auria, L., Giudicepietro, F. et al. Automatic Recognition of Landslides Based on Neural Network Analysis of Seismic Signals: An Application to the Monitoring of Stromboli Volcano (Southern Italy). Pure Appl. Geophys. 170, 1821–1832 (2013). https://doi.org/10.1007/s00024-012-0614-1

Download citation

Keywords

  • Lava Flow
  • Seismic Signal
  • Volcanic Tremor
  • Linear Predictive Code
  • Effusive Eruption