Skip to main content

Sources of Error Model and Progress Metrics for Acoustic/Infrasonic Analysis: Location Estimation


How well can we locate events using infrasound? This question has obvious implications for the use of infrasound within the context of nuclear explosion monitoring, and can be used to inform decision makers on the capability and limitations of infrasound as a sensing modality. This paper attempts to answer this question in the context of regional networks by quantifying current capability and estimating future capability using an example regional network in Utah. This example is contrasted with a sparse network over a large geographical region (representative of the IMS network). As a metric, we utilize the location precision, a measure of the total geographic area in which an event may occur at a 95 % confidence level. Our results highlight the relative importance of backazimuth and arrival time constraints under different scenarios (dense vs. sparse networks), and quantify the precision capability of the Utah network under different scenarios. The final section of this paper outlines the research and development required to achieve the estimated future location precision capability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Bratt, S.R. and Bache, T.C., 1988. Locating Events with a Sparse Network of Regional Arrays, Bull. Seism. Soc. Am., 78, 780–798.

  2. Brown, D.J., Katz, C., Le Bras, R., Flanagan, M.P., Wang, J. and Gault, A.K., 2002a. Infrasonic Signal Detection and Source Location at the Prototype International Data Center, Pure appl. geophys., 159, 1081–1125.

  3. Brown, P., Whitaker, R.W., Revelle, D. and Tagliaferri, E., 2002b. Multi-station infrasonic observations of two large bolides: signal interpretation and implications for monitoring of atmospheric explosions, Geophys. Res. Lett., 29. doi:10.1029/2001GL013778.

  4. Casella, G. and George, E., 1992. Explaining the Gibbs sampler, The American Statistician, 46, 167–174.

  5. Ceranna, L., Le Pichon, A., Green, D.N. and Mialle, P., 2009. The Buncefield explosion: a benchmark for infrasound analysis across Central Europe, Geophys. J. Int., 177, 491–508.

  6. Che, I.-Y., Shin, J.S. and Kang, I.B., 2009. Seismo-acoustic location method for small-magnitude surface explosions, Earth Planets Space, 61, e1-e4.

    Google Scholar 

  7. Drob, D.P., Picone, J.M. and Garces, M., 2003. Global morphology of infrasound propagation, J. Geophys. Res., 108. doi:10.1029/2002JD003307.

  8. Evers, L.G., Ceranna, L., Haak, H.W., Le Pichon, A. and Whitaker, R.W., 2007. A Seismoacoustic Analysis of the Gas-Pipeline Explosion near Ghislenghien in Belgium, Bull. Seism. Soc. Am., 97, 417–425. doi:10.1785/0120060061.

  9. Geiger, L., 1912. Probability method for the determination of earthquake epicenters from the arrival time only, Bull. St. Louis. Univ., 8, 60–71.

    Google Scholar 

  10. Gibson, R., Drob, D.P. and Broutman, D., 2009. Advancement of Techniques for Modeling the Effects of Fine-scale Atmospheric Inhomogeneities on Infrasound Propagation. in 2009 Monitoring Research Review, Tucson.

  11. Green, D.N. and Bowers, D., 2010. Estimating the detection capability of the International Monitoring System infrasound network, J. Geophys. Res., 115. doi:10.1029/2010JD014017.

  12. Hedlin, M.A.H., De Groot-Hedlin, C.D. and Drob, D.P., 2011. A Study of Infrasound Propagation Using Dense Seismic Networks American Geophysical Union Fall Meeting, Abstract A31A-0037, Bull. Seism. Soc. Am., Submitted.

  13. Hedlin, M.A.H., Drob, D.P., Walker, K.T. and De Groot-Hedlin, C.D., 2010. A study of acoustic propagation from a large bolide using a dense seismic network, J. Geophys. Res., 115. doi:10.1029/2010JB007669.

  14. Jensen, F., Kuperman, W., Porter, M., Schmidt, H., 1994. Computational Ocean Acoustics, AIP Press, Woodbury, NY, Sec. 3.3.1.

  15. Kinsler, L, Frey, A., Coppens, A. and Sanders, J. 1982. Fundamentals of Acoustics, 3rd. Ed., Wiley, NY, Sec. 5.13.

  16. Kulichkov, S.N., 2004. Long-range propagation and scattering of low-frequency sound pulses in the middle atmosphere, Meteor. and Atmos. Phys., 85, 47–60. doi:10.1007/s00703-003-0033-z.

  17. Le Pichon, A., Vergoz, J., Blanc, E., Guilbert, J., Ceranna, L., Evers, L.G. and Brachet, N., 2009. Assessing the performance of the International Monitoring System’s infrasound network: Geographical coverage and temporal variabilities, J. Geophys. Res., 114. doi:10.1029/2008JD010907.

  18. Levanon, N., 2000. Lowest GPS in 2-D scenarios, IEE Proc.-Radar, Sonar Navig., 147 (3), 149–155.

  19. Marcillo, O., Arrowsmith, S.J., Whitaker, R.W. and Anderson, D.N., 2012. Enhancements to the Bayesian Infrasound Source Location Method. in 2012 Monitoring Research Review, Albuquerque, NM.

  20. Modrak, R.T., Arrowsmith, S.J. and Anderson, D.N., 2010. A Bayesian framework for infrasound location, Geophys. J. Int., 181, 399–405. doi:10.1111/j.1365-246X.2010.04499.x.

    Google Scholar 

  21. Mutschlecner, J.P. and Whitaker, R.W., 2005. Infrasound from earthquakes, J. Geophys. Res., 110. doi:10.1029/2004JD005067.

  22. Norris, D., Bhattacharyya, J. and Whitaker, R.W., 2007. Development of Advanced Propagation Models and Application to the study of Impulsive Infrasonic Events. in 29th Monitoring Research Review, edn 2007. Denver, CO.

  23. Norris, D. and Gibson, R., 2002. InfraMAP Enhancements: Environmental/Propagation Variability and Localization Accuracy of Infrasonic Networks. in 24th Seismic Research Review, pp. 809–813, Ponte Vedra Beach, Florida.

  24. Pinsky, V., Gitterman, Y., Ben Horin, Y. and Arrowsmith, S.J., 2012. Seismo-acoustic analysis for series of ammunition demolition explosions at Sayarim, Israel. in European Geophysical Union General Assembly, Vienna, Austria.

  25. Stump, B., Burlacu, R., Hayward, C., Pankow, K.L., Nava, S., Bonner, J., Hoch, S., Whiteman, D., Fisher, A., Kim, T.S., Kubacki, R., Leidig, M., Britton, J., Drobeck, D., O’Neill, P., Jensen, K., Whipp, K., Johanson, G., Roberson, P., Read, R., Brogan, R. and Masters, S., 2007. Seismic and Infrasound Energy Generation and Propagation at Local and Regional Distances: Phase I—Divine Strake Experiment. Air Force Research Laboratory.

  26. Szuberla, C.A.L. & Arnoult, K., 2011. Locating explosions, volcanoes, and more with infrasound, Physics Today, 64, 74–75. doi:10.1063/1.3580503.

  27. Szuberla, C.A.L. and Olson, J.V., 2004. Uncertainties associated with parameter estimation in atmospheric infrasound arrays, J. Acoust. Soc. Am., 115, 253–258.

    Google Scholar 

  28. Szuberla, C.A.L., Olson, J.V. and Arnoult, K., 2009. Explosion localization via infrasound, JASA Express Letters, 126. doi:10.1121/1.3216742.

  29. Yarlagadda, R., Ali, I., Al-Dhahir, N. and Hershey, J., 2000. GPS GDOP metric, IEE Proc.−Radar, Sonar Navig., 147 (5), 259–264.

Download references


We thank David Green for his comments and suggestions on a draft of this manuscript and two anonymous reviewers for their constructive feedback. We also thank Leslie Casey for proposing this manuscript and for funding this work. This work was completed under the auspices of the U.S. Department of Energy by Los Alamos National Laboratory.

Author information



Corresponding author

Correspondence to Stephen Arrowsmith.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arrowsmith, S., Norris, D., Whitaker, R. et al. Sources of Error Model and Progress Metrics for Acoustic/Infrasonic Analysis: Location Estimation. Pure Appl. Geophys. 171, 587–597 (2014).

Download citation


  • Infrasound
  • event location
  • nuclear explosion monitoring