Skip to main content
Log in

The Effect of Varying Damage History in Crystalline Rocks on the P- and S-Wave Velocity under Hydrostatic Confining Pressure

Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Cracks play a very important role in many geotechnical issues and in a number of processes in the Earth’s crust. Elastic waves can be used as a remote sensing tool for determining crack density. The effect of varying crack density in crystalline rock on the P- and S-wave velocity and dynamic elastic properties under confining pressure has been quantified. The evolution of P- and S-wave velocity were monitored as a suite of dry Westerly granite samples were taken to 60, 70, 80 and 90 % of the unconfined uniaxial strength of the sample. The damaged samples were then subjected to hydrostatic confining pressure from 2 MPa to 200 MPa to quantify the effect of varying crack density on the P- and S-wave velocity and elastic properties under confining pressure. The opening and propagation of microcracks predominantly parallel to the loading direction during uniaxial loading caused a 0.5 and 6.3 % decrease in the P- and S-wave velocity, respectively. During hydrostatic loading, microcracks are closed at 130 MPa confining pressure. At lower pressures the amount of crack damage in the samples has a small but measureable effect. We observed a systematic 6 and 4 % reduction in P- and S-wave velocity, respectively, due to an increase in the fracture density at 2 MPa confining pressure. The overall reduction in the P- and S-wave velocity decreased to 2 and 1 %, respectively, at 50 MPa. The elastic wave velocities of samples that have a greater amount of microcrack damage are more sensitive to pressure. Effective medium modelling was used to invert elastic wave velocities and infer crack density evolution. Comparing the crack density results with experimental data on Westerly granite samples shows that the effective medium modelling used gave interpretable and reasonable results. Changes in crack density can be interpreted as closure or opening of cracks and crack growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Armitage, P. J., D. R. Faulkner, R. H. Worden, A. C. Aplin, A. R. Butcher, and J. Iliffe (2011), Experimental measurement of, and controls on, permeability and permeability anisotropy of caprocks from the CO2 storage project at the Krechba Field, Algeria, J. Geophys. Res., 116(B12), B12208.

    Google Scholar 

  • ASTM (1997a), Standard test method for laboratory determination of pulse velocities and ultrasonic elastic constants of rock (D2845-95). in 1997 Annual Book of ASTM Standards, Vol. 4.08., edited, pp. 254-259, American Society for Testing and Materials (ASTM), Philadelphia, PA.

  • Batzle, M., G. Simmons, and R. W. Siegfried (1980), Microcrack closure in rocks under stress: direct observation, J. Geophys. Res., 85(B12), 7072-7090.

  • Bieniawski, Z. T. (1967a), Mechanism of brittle fracture of rock: Part I - theory of the fracture process, Int. J. Rock Mech. Min. Sci. Geomech. Abs., 4(4), 395-406.

  • Bieniawski, Z. T. (1967b), Mechanism of brittle fracture of rock: Part II - experimental studies, Int. J. Rock Mech. Min. Sci. Geomech. Abs., 4(4), 407-423.

  • Bieniawski, Z. T. (1967c), Mechanism of brittle fracture of rock: Part III - fracture in tension and under long-term loading, Int. J. Rock Mech. Min. Sci. Geomech. Abs., 4(4), 425-430.

    Google Scholar 

  • Birch, F. (1960), The Velocity of Compressional Waves in Rocks to 10-Kilobars .1., J. Geophys. Res., 65(4), 1083-1102.

  • Birch, F. (1961), Velocity of Compressional Waves in Rocks to 10 Kilobars, .2., J. Geophys. Res., 66(7), 2199-2224.

  • Blake, O. O. (2011), Seismic transport properties of fractured rocks, PhD thesis, University of Liverpool, Liverpool.

  • Borm, G., B. Engeser, B. Hoffers, H. K. Kutter, and C. Lempp (1997), Borehole instabilities in the KTB main borehole, J. Geophys. Res., 102(B8), 18507-18517.

  • Brace, W. F. (1965), Some new measurements of linear compressibility of rocks, J. Geophys. Res., 70(2), 391-398.

    Google Scholar 

  • Brace, W. F., B. Paulding Jr, and C. Scholz (1966), Dilatancy in the fracture of crystalline rocks, J. Geophys. Res., 71(16), 3939-3953.

  • Cheng, C. H., and M. N. Toksöz (1979), Inversion of seismic velocities for the pore aspect ratio spectrum of a rock, J. Geophys. Res., 84, 7533-7544.

    Google Scholar 

  • Christensen, N. I., and H. Wang (1985), The influence of pore pressure and confining pressure on dynamic elastic properties of Berea sandstone, Geophysics, 50, 207-213.

  • Faulkner, D. R., T. M. Mitchell, D. Healy, and M. J. Heap (2006), Slip on ‘weak’ faults by the rotation of regional stress in the fracture damage zone, Nature, 444(7121), 922-925.

  • Haimson, B., and C. Chang (2000), A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of Westerly granite, Int. J. Rock. Mech. Min., 37(1-2), 285-296.

  • Henyey, F. S., and N. Pomphrey (1982), Self-consistent elastic moduli of a cracked solid, Geophys. Res. Lett., 9(8), 903-906.

    Google Scholar 

  • Hoek, E., and Z. T. Bieniawski (1965), Brittle fracture propagation in rock under compression, Int. J. Fract., 1(3), 137-155.

  • Hudson, J. A. (1981), Wave speeds and attenuation of elastic waves in material containing cracks, Geophys. J. R. Astron. Soc., 64(1), 133-150.

    Google Scholar 

  • Hudson, J. A. (1986), A higher order approximation to the wave propagation constants for a cracked solid, Geophys. J. R. Astron. Soc., 87(1), 265-274.

    Google Scholar 

  • Hudson, J. A. (1990), Overall elastic properties of isotropic materials with arbitrary, Geophys. J. Int., 102(2), 465-469.

    Google Scholar 

  • Kachanov, M. (1994), Elastic Solids with Many Cracks and Related Problems, in Advances in Applied Mechanics, edited by W. H. John and Y. W. Theodore, pp. 259-445, Elsevier.

  • Kern, H. (1978), The effect of high temperature and high confining pressure on compressional wave velocities in quartz-bearing and quartz-free igneous and metamorphic rocks, Tectonophysics, 44(1-4), 185-203.

  • Kern, H. (1990), Laboratory seismic measurements: an aid in the interpretation of seismic field data, Terra Nova, 2(6), 617-628.

  • Kilburn, C. R. J., and B. Voight (1998), Slow rock fracture as eruption precursor at Soufriere Hills Volcano, Montserrat, Geophys. Res. Lett., 25(19), 3665-3668.

  • King, M. S. (1983), Static and Dynamic Elastic Properties of Rocks from the Canadian Shield, Int. J. Rock. Mech. Min., 20(5), 237-241.

  • Kranz, R. L. (1979), Crack growth and development during creep of Barre granite, Int. J. Rock Mech. Min. Sci. Geomech. Abs., 16(1), 23-35.

  • Kuttruff, H. (1991), Ultrasonics fundamentals and applications, Elsevier Science & Technology.

  • Legarth, B., E. Huenges, and G. Zimmermann (2005), Hydraulic fracturing in a sedimentary geothermal reservoir: Results and implications, Int. J. Rock. Mech. Min., 42(7-8), 1028-1041.

  • Lockner, D. A., J. B. Walsh, and J. D. Byerlee (1977), Changes in seismic velocity and attenuation during deformation of granite, J. Geophys. Res., 82(33), 5374-5378.

    Google Scholar 

  • Lockner, D. A. (1998), A generalized law for brittle deformation of Westerly granite, J. Geophys. Res, 103(B3), 5107-5123.

    Google Scholar 

  • McClintock, F., and J. Walsh (1962), Friction on Griffith cracks in rocks under pressure, Proceedings of the 4th U.S. National Congress on Applied Mechanics Berkeley, California, 1015-1022.

  • Meredith, P. G., and B. K. Atkinson (1985), Fracture toughness and subcritical crack growth during high-temperature tensile deformation of Westerly granite and Black gabbro, Phys. Earth Planet. Interiors, 39(1), 33-51.

    Google Scholar 

  • Mitchell, T. M., and D. R. Faulkner (2009), The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile, J. Struct. Geol., 31(8), 802-816.

    Google Scholar 

  • Mockovčiaková, A., and B. Pandula (2003), Study of the Relation Between the Static and Dynamic Moduli of Rocks, Metalurgija, 1(42), 37-39.

  • Moos, D., and M. Zoback (1983), In situ studies of velocity in fractured crystalline rocks, J. Geophys. Res., 88(B3), 2345-2358.

    Google Scholar 

  • Morrow, C., and D. Lockner (1994), Permeability differences between surface derived and deep drillhole core samples, Geophys. Res. Lett., 21(19), 2151-2154.

    Google Scholar 

  • Nara, Y., P. G. Meredith, T. Yoneda, and K. Kaneko (2011), Influence of macro-fractures and micro-fractures on permeability and elastic wave velocities in basalt at elevated pressure, Tectonophysics, 503(1-2), 52-59.

  • Nasseri, M. H. B., A. Schubnel, P. Benson, and R. Young (2009), Common Evolution of Mechanical and Transport Properties in Thermally Cracked Westerly Granite at Elevated Hydrostatic Pressure, Pure Appl. Geophys., 166(5), 927-948.

  • Nur, A., and G. Simmons (1969), The effect of saturation on velocity in low porosity rocks, Earth Planet. Sci. Lett., 7(2), 183-193.

  • O’Connell, R. J., and B. Budiansky (1974), Seismic Velocities in Dry and Saturated Cracked Solids, J. Geophys. Res., 79(35), 5412-5426.

  • Ougier-Simonin, A., J. Fortin, Y. Guéguen, A. Schubnel, and F. Bouyer (2011a), Cracks in glass under triaxial conditions, Int. J. Eng. Sci., 49(1), 105-121.

  • Ougier-Simonin, A., J. Fortin, Y. Guéguen, A. Schubnel, and F. Bouyer (2011b), Permeability and elastic properties of cracked glass under pressure, J Geophys. Res., 116(B7), B07203.

  • Paterson, M., and T. Wong (2005), Experimental rock deformation-the brittle field, Springer Verlag.

  • Peacock, S., C. McCann, J. Sothcott, and T. Astin (1994), Seismic velocities in fractured rocks: an experimental verification of Hudson’s theory, Geophys. Prospect., 42(1), 27-80.

  • Reuschlé, T., S. Gbaguidi Haore, and M. Darot (2006), The effect of heating on the microstructural evolution of La Peyratte granite deduced from acoustic velocity measurements, Earth Planet. Sci. Lett., 243(3-4), 692-700.

  • Safari, A., and E. K. Akdoğan (2008), Piezoelectric and acoustic materials for transducer applications, Springer Science + Business Media.

  • Sayers, C. M., and M. Kachanov (1991), A simple technique for finding effective elastic constants of cracked solids for arbitrary crack orientation statistics, Int. J. Solids Struct., 27(6), 671-680.

    Google Scholar 

  • Sayers, C. M., and M. Kachanov (1995), Microcrack-induced elastic wave anisotropy of brittle rocks, J. Geophys. Res., 100(B3), 4149-4156.

    Google Scholar 

  • Schubnel, A., and Y. Guéguen (2003), Dispersion and anisotropy of elastic waves in cracked rocks, J. Geophys. Res., 108(B2), 2101.

    Google Scholar 

  • Schubnel, A., O. Nishizawa, K. Masuda, X. J. Lei, Z. Xue, and Y. Guégen (2003), Velocity Measurements and Crack Density Determination During Wet Triaxial Experiments on Oshima and Toki Granites, Pure Appl. Geophys., 160(5), 869-887.

  • Schubnel, A., P. M. Benson, B. D. Thompson, J. F. Hazzard, and R. P. Young (2006), Quantifying damage, saturation and anisotropy in cracked rocks by inverting elastic wave velocities, Pure Appl. Geophys., 163(5), 947-973.

    Google Scholar 

  • Scott Jr, T. E., Q. Ma, and J. C. Roegiers (1993), Acoustic velocity changes during shear enhanced compaction of sandstone, Int. J. Rock Mech. Min. Sci. Geomech. Abs., 30(7), 763-769.

    Google Scholar 

  • Tapponnier, P., and W. F. Brace (1976), Development of stress-induced microcracks in Westerly Granite, Int. J. Rock Mech. Min. Sci. Geomech. Abs., 13(4), 103-112.

  • Tsang, C.-F., J. Birkholzer, and J. Rutqvist (2008), A comparative review of hydrologic issues involved in geologic storage of CO 2 and injection disposal of liquid waste, Environ. Geol., 54(8), 1723-1737.

  • Vanheerden, W. L. (1987), General Relations between Static and Dynamic Moduli of Rocks, Int. J. Rock Mech. Min. Sci. Geomech. Abs., 24(6), 381-385.

  • VanValkenburg, H. (1983), Backing for ultrasonic transducer crystal, in United States Patent, edited, Automation Industries, Inc., Greenwich Conn.

  • Walsh, J. B. (1965a), The effect of cracks in rocks on Poisson’s ratio, J. Geophys. Res., 70(20), 5249-5257.

  • Walsh, J. B. (1965b), The effect of cracks on the uniaxial elastic compression of rocks, J. Geophys. Res., 70(2), 399-411.

    Google Scholar 

  • Walsh, J. B. (1965c), Effect of Cracks on Compressibility of Rock, J. Geophys. Res., 70(2), 381-&.

  • Walsh, J. B., and W. F. Brace (1972), Elasticity of rock in uniaxial strain, Int. J. Rock Mech. Min. Sci. Geomech. Abs., 9(1), 7-15.

  • Wang, Z. (2000), Dynamic versus static elastic properties of reservoir rocks., Society of Exploration Geophysicists: Seismic and acoustic velocities in reservoir rocks, 3, 531-539.

  • Wilson, J. E., J. S. Chester, and F. M. Chester (2003), Microfracture analysis of fault growth and wear processes, Punchbowl Fault, San Andreas system, California, J. Struct. Geol., 25(11), 1855-1873.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Blake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blake, O.O., Faulkner, D.R. & Rietbrock, A. The Effect of Varying Damage History in Crystalline Rocks on the P- and S-Wave Velocity under Hydrostatic Confining Pressure. Pure Appl. Geophys. 170, 493–505 (2013). https://doi.org/10.1007/s00024-012-0550-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-012-0550-0

Keywords

Navigation