Pure and Applied Geophysics

, Volume 170, Issue 3, pp 391–407 | Cite as

A Rupture Model for the 1999 Chi-Chi Earthquake from Inversion of Teleseismic Data Using the Hybrid Homomorphic Deconvolution Method

  • Boi-Yee LiaoEmail author
  • Tian-Wei Sheu
  • Yeong-Tien Yeh
  • Huey-Chu Huang
  • Lien-Shiang Yang


This study investigates the kinematics of the rupture process of the M L 7.3 Chi–Chi, Taiwan, earthquake on September 21, 1999. By applying the proposed hybrid homomorphic deconvolution method to deconvolve teleseismic broadband P-wave displacement recordings of the earthquake, this study derives the apparent source time functions (ASTFs) at ten stations located around the epicenter. To further characterize the fault, the kinematic history of the rupture was inverted from ASTFs using a genetic algorithm, coupled with nonlinear iterative technique. The calculated ASFTs reveal that the total rupture event lasted for approximately 27 s. Static slip distribution images indicate that most slip occurred at shallower portions of the fault plane, especially 20–55 km north of the epicenter. The maximum slip reached 20 m at 45 km north of the epicenter, and the average slip throughout the observed rupture area was approximately 2 m. Large asperities on the fault appeared at 25–35 km and 40–50 km north of the hypocenter, and coincided with relatively high rupture velocity. This suggests that the earthquake’s energy may have been released quickly. The rupture velocity decreased upon encountering an asperity, and increased again after passing the asperity. This implies that the rupture required more time to overcome the resistances of the asperities. The maximum rupture velocity was 3.8 km/s, while the average rupture velocity was approximately 2.2 km/s. The rise time distribution suggests that larger slip amplitudes generally correspond to shorter rise times on the subfaults.


Source Model Global Position System Data Rupture Process Rupture Velocity Phase Unwrap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to express their thanks to the anonymous reviewers for their valuable suggestions, and to the Incorporated Research Institutions for Seismology for providing the teleseismic data.


  1. Aguirre, J., and K. Irikura (2004). Reliability of envelope inversion for the high-frequency radiation source process using strong motion data: example of the 1995 Hyogoken Nanbu earthquake, Bull. Seism. Soc. Am. 93, 2005–2016.Google Scholar
  2. Ammon, C. J., A. A. Velasco and T. Lay (1993). Rapid estimation of rupture directivity: application to the 1992 Landers (M S = 7.4) and Cape Mendocino (M S = 7.2), California earthquake, Geophys. Res. Lett. 20, 97–100.Google Scholar
  3. Abdel-Fattah, A. K. (2002). Source characteristics of a moderate earthquake (M 4.9) using empirical Green’s function technique, Annals of Geophysics 45(5), 575–586.Google Scholar
  4. Baumont, D. and F. Courboulex, O. Scotti, N. S. Melis, and G. Stavrakakis (2002). Slip distribution of the Mw 5.9, 1999 Athens earthquake inverted from regional seismiological data, Geophys. Res. Lett., 29(15), 1720, doi: 10.1029/2001GL014261.
  5. Bertero, M., D. Bindi, P. Boccacci, M. Cattaneo, C. Eva and V. Lanza (1997), Application of the projected Landweber method to the estimation of the source time function in seismology, Inverse problem 13, 456–486.Google Scholar
  6. Bertero, M., D. Bindi, P. Boccacci, M. Cattaneo, C. Eva and V. Lanza (1998), A novel blind-deconvolution method with an application to seismology, Inverse problem 14, 815–833.Google Scholar
  7. Chen, J., D. V. Helmberger, T. R. A. Song, K. F. Ma and D. J. Wald (2001). Slip distribution and tectonic implication of the 1999 Chi-Chi, Taiwan, earthquake, Geophys. Res. Let. 28(23), 4379–4382.Google Scholar
  8. Chi, W. C., D. Dreger and A. Kaverina (2001). Finite-source modeling of the 1999 Taiwan (Chi-Chi) earthquake derived from a dense strong-motion network, Bull. Seism. Soc. Am. 91(5), 1144–1157.Google Scholar
  9. Chu, R., L. Zhu and D. V. Helmberger (2009). Determination of earthquake focal depths and source time functions in central Asia using teleseismic P waveforms, Geophys. Res. Lett. 36, L17317, doi: 10.1029/2009GL039494.
  10. Dalguer, L. A., K. Irikura, J. D. Riera and H. C. Chiu (2001). The importance of the dynamic source effects on strong ground motion during the 1999 Chi-Chi, Taiwan, earthquake: brief interpretation of the damage distribution on buildings, Bull. Seism. Soc. Am. 91(5), 1112–1127.Google Scholar
  11. Dewberry, S. R., and R.S. Crosson (1996). The MD 5.0 earthquake of 29 January 1995 in the Puget lowland of western Washington: an event on the Seattle fault? Bull. Seism. Soc. Am. 86, 1167–71172.Google Scholar
  12. Goldberg, D. E. (1989). Generic algorithm in search, optimization, and machine learning, Addison-Wesley, 432 pp.Google Scholar
  13. Inouye, Y. and T. Sato (1999). Iterative algorithms based on multistage criteria for multichannel blind deconvolution, IEEE Trans. Signal Process. 47, 1759–1764.Google Scholar
  14. Irikura, K., K. Kamae and L. A. Dalguer (2000). Source model for simulating ground motion during the 1999 Chi-Chi earthquake, Earthquake Engineering and Engineering Seismology 2(2), 1–14.Google Scholar
  15. Iwata, T., H. Sekiguchi and A. Pitarka (2000). Source and site effect on strong ground motions in near-source area during the 1999 Chi-Chi, Taiwan, earthquake, Eos Trans. AGU, 81(48), Fall Meet. Suppl., Abstract S72B-07.Google Scholar
  16. Jin, D. J. and JR. Rogers (1983). Homomorphic deconvolution, Geophys. 48(7), 1014–1016.Google Scholar
  17. Jin, D. J. and E. Eisner (1984). A review of homomorphic deconvolution, Rev. Geophys. Space Phys. 22(3), 255–263.Google Scholar
  18. Kaaresen, K. F., and T. Taxt (1998), Multichannel blind deconvolution of seismic signals, Geophysics 63, 2093–2107.Google Scholar
  19. Kikuchi, M., Y. Yagi and Y. Yamanaka (2000). Source process of the Chi-Chi, Taiwan earthquake of September 21, 1999, inferred from teleseismic body waves, Bull. Earthq. Res. Inst. Univ. Tokyo 75, 1–13.Google Scholar
  20. Lanza, V., D. Spallarossa, M. Cattaneo, D. Bindi, and P. Augliera (1999). Source parameters of small events using constrained deconvolution with empirical Green’s functions, Geophys. J. Int. 137, 651–662.Google Scholar
  21. Lee, S. J. and K. F. Ma (2000). Rupture process of the 1999 Chi-Chi, Taiwan, earthquake from the inversion of teleseismic data, Terr. Atmos. Ocean. Sci. 3, 591–608.Google Scholar
  22. Lee, S. J., K. F. Ma and H. W. Chen (2006). Three-dimensional dense strong motion waveform inversion for the rupture process of the 1999 Chi-Chi, Taiwan, earthquake, J. Geophs. Res. 111, B11308, doi: 10.1029/2005JB004097.
  23. Liao, B. Y. and H. C. Huang (2003). A refinement of the generalized blind deconvolution method based on the Gaussian mixture and its application, Terr. Atmos. Ocean. Sci. 14(3), 1–11.Google Scholar
  24. Liao, B. Y. and H. C. Huang (2005). Estimation of the source time function based on blind deconvolution with Gaussian mixtures, Pure and Applied Geophys. 162 (3), 1–11.Google Scholar
  25. Liao, B. Y. and H. C. Huang (2008). Rupture process of the 2002 Mw 7.9 Denali earthquake, Alaska, using a newly devised hybrid blind deconvolution method, Bull. Seism. Soc. Am. 98(1), 162–179.Google Scholar
  26. Li, X. Q. and J. L. Nabelek (1999). Deconvolution of teleseismic body waves for enhancing structure beneath a seismometer array, Bull. Seism. Soc. Am. 89(1), 190–201.Google Scholar
  27. Ma, K. F., J. Mori, S. J. Lee and S. B. Yu (2001). Spatial and temporal distribution of slip for the 1999 Chi-Chi, Taiwan, earthquake, Bull. Seism. Soc. Am. 91(5), 1069–1087.Google Scholar
  28. Ma, K. F., E. E. Brodsky, J. Mori, C. Ji, T. R. A. Song and H. Kanamori (2003). Evidence for fault lubrication during the 1999 Chi-Chi, Taiwan, earthquake (Mw 7.6), Geophys. Res. Lett. 30(5), 1244, doi: 10.1029/2002GL015380.
  29. Makowski, R. (2003). Source pulse of mine shock by blind deconvolution, Pure Appl. Geophys. 160, 1191–1205.Google Scholar
  30. Marenco, A. L. and V. K. Madisetti (1997). On homomorphic deconvolution of bandpass signals, IEEE Trans. on Signal Processing 45(10), 2499–2513.Google Scholar
  31. Menke, W. (1989). Geophysical Data Analysis: Discrete Inverse Theory, Revised Edition, Academic Press, Inc., New York.Google Scholar
  32. Michael, A., H. Hedlin, J. B. Minster and J. A. Orcutt (1990). An automatic means to discriminate between earthquakes and quarry blasts, Bull. Seism. Soc. Am. 80(6), 2143–2160.Google Scholar
  33. Miyake, H., Y. Tanaka, M. Sakaue, K. Koketsu and Y. Ishihaki (2006). Empirical Green’s function simulation of broadband ground motions on Genkai Island during the 2005 west off Fukuoka prefecture earthquake, Earth Planets Space 58, 1637–1642.Google Scholar
  34. Nakanishi, I. (1991). Source process of the 1989 Sanriku-Oki earthquake, Japan: source function determined using empirical Green’s function, J. Phys. Earth. 39, 661–667.Google Scholar
  35. Otis, R. M. and R. B. Smith (1977). Homomorphic deconvolution by log spectral averaging, Geophysics 42(6), 1146–1157.Google Scholar
  36. Olson, E. L., and R. M. Allen (2005). The deterministic nature of earthquake rupture, Nature 438, 212–215. doi: 10.1038/nature04214.
  37. Oppenheim, A. V. and R. W. Schafer (1989). Discrete-Time Signal Processing: Prectice Hall, Englewood Cliffs, New Jersey.Google Scholar
  38. Plesinger, A. and R. Vich (1985). Recovery of source time function approximations by homomorphic deconvolution of broad-band-recorded teleseismic body waves, Tectonophysics 118, 195–212.Google Scholar
  39. Plicka V., Zahradnik J. (1998). Inverting seismograms of weak events for empirical Green’s tensor derivatives, Geophys. J. Int. 132, 471–478.Google Scholar
  40. Ramillien, G. (2001). Genetic algorithm for geophysical parameter inversion from altimeter data, Geophys. J. Int. 147, 339–402.Google Scholar
  41. Sarkar, S., P. K. Dutta and N. C. Roy (1998). A blind-deconvolution approach for chromatographic and spectroscopic peak restoration, IEEE Transactions on Instrumentation and Measurement 47(4), 941–947.Google Scholar
  42. Santamaria, I., C. J. Pantaleon, J. Ibanez, and A. Artes (1999). Deconvolution of seismic data using adaptive Gaussian mixtures, IEEE Trans. on Geosciences and Remote Sensing 37, 855–859.Google Scholar
  43. Shin, T. C., K. W. Kuo, W. H. K. Lee, T. L. Teng and Y. B. Tsai (2000). A preliminary report on the 1999 Chi-Chi (Taiwan) earthquake, Seism. Res. Lett. 71, 24–30.Google Scholar
  44. Steiglitz, K. and B. Dickinson (1982). Phase unwrapping by factorization, IEEE Transactions on Acoustics, Speech and Signal Processing 30(6), 723–726.Google Scholar
  45. Sitton, G. A., C. S. Burrus, J. W. Fox and S. Treitel (2003). Factoring very-high-degree polynomials, IEEE Signal Processing Magazine 20(6), 27–42.Google Scholar
  46. Tavares, D. M., L. S. Lucena, H. A. Schots, E. C. Mundim and F. J. Hermann (2005). The deconvolution of seismic data as a fluctuation analysis, Integrated Computer-Aided Engineering 12, 25–42.Google Scholar
  47. Thio, H. K., R. W. Graves and P. G. Somerville (2004). A multiple time window rupture model for the 1999 Chi-Chi earthquake from a combined inversion of teleseismic, surface wave, strong motion, and GPS data, J. Geophs. Res. 109, B08309, doi: 10.1029/2002JB002381.
  48. Treitel, S., G. A. Sitton, J. W. Fox and C. S. Burrus (2006). Factoring high-degree polynomials with applications to geophysics, The Leading Edge 25(10), 1216–1219; doi: 10.1190/1.2360607.
  49. Tribolet, J. M. (1977). A new phase unwrapping algorithm, IEEE Transactions on Acoustics, Speech and Signal Processing ASSP-25(2), 170–177.Google Scholar
  50. Ulrych, T. J. (1971). Application of homomorphic deconvolution to seismology, Geophysics 36(4), 650–660.Google Scholar
  51. Ulrych, T. J., O. G. Jensen, R. M. Ellis and P. G. Somerville (1972). Homomorphic deconvolution of some teleseismic events, Bull. Seism. Soc. Am. 62(5), 1269–1281.Google Scholar
  52. Vallee, M. (2004). Stabilizing the empirical Green function analysys: Development of the projected Landweber method, Bull. Seism. Soc. Am. 94 (2), 394–409.Google Scholar
  53. Vallee, M. (2007). Rupture properties of the giant Sumatra earthquake imaged by empirical Green’s function analysis, Bull. Seism. Soc. Am. 97 (1A), S103–S114.Google Scholar
  54. Venkataraman, A., L. Rivera and H. Kanamori (2002). Radiated energy from the 16 October 1999 Hector Mine earthquake: regional and teleseismic estimates, Bull. Seism. Soc. Am. 92(4), 1256–1265.Google Scholar
  55. Velasco, A.A., C. J. Ammon and T. Lay (1994). Recent large earthquakes near Cape Mendocino and in the Gorda plate: broadband source time functions, fault orientations and rupture complexities, J. Geophys. Res. 99, 711–728.Google Scholar
  56. Wu, C., M. Takeo and S. Ide (2001). Source process of the Chi-Chi earthquake: A joint inversion of strong motion data and global positioning system data with a multifault model, Bull. Seism. Soc. Am. 91(5), 1128–1143.Google Scholar
  57. Xu, L. S., Y. T. Chen, T. L. Teng and G. Patau (2002). Temporal-Spatial Rupture Process of the 1999 Chi-Chi Earthquake from IRIS and GEOSCOPE Long-Period Waveform Data Using Aftershocks as Empirical Green’s Functions, Bull. Seism. Soc. Am. 92, 3210–3228.Google Scholar
  58. Zeng, Y. and C. H. Chen (2001). Fault rupture process of the 20 September 1999 Chi-Chi, Taiwan, earthquake, Bull. Seism. Soc. Am. 91(5), 1088–1098.Google Scholar
  59. Zhang, W., T. Iwata and K. Irikura (2010). Dynamic simulation of the 1999 Chi-Chi, Taiwan, earthquake, J. Geophs. Res. 115, B04305, doi: 10.1029/2008JB006201.
  60. Zollo, A., Capuano, P., and Singh, S. (1995). Use of small earthquake records to determine the source function of a large earthquake: an alternative method and an application, Bull. Seism. Soc. Am. 85, 1249–1256.Google Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Boi-Yee Liao
    • 1
    Email author
  • Tian-Wei Sheu
    • 1
  • Yeong-Tien Yeh
    • 2
  • Huey-Chu Huang
    • 3
  • Lien-Shiang Yang
    • 4
  1. 1.Research Center on Educational Measurement and StatisticsNational Taichung UniversityTaichungTaiwan, ROC
  2. 2.Department of Applied GeoinformaticsChia Nan University of Pharmacy and ScienceTainanTaiwan, ROC
  3. 3.Institute of SeismologyNational Chung Cheng UniversityChia-YiTaiwan, ROC
  4. 4.Department of MathematicsNational Taitung UniversityTaitungTaiwan, ROC

Personalised recommendations