Pure and Applied Geophysics

, Volume 170, Issue 3, pp 259–270 | Cite as

Numerical Analysis of the Effect of Mesoscale Eddies on Seismic Imaging

  • Lili Ji
  • Mian LinEmail author


The influence of the mesoscale eddy on seismic wave propagation and seismic imaging in deep sea is investigated. Based on fundamental fluid equations, an appropriate partial differential equation is derived for the acoustic pressure field in water with eddies, including current effects. Seismic wavefields and synthetic seismograms in the center of the eddy are simulated. Numerical experiments demonstrate that velocity variations caused by the eddy can lead to traveltime perturbations. Further, in seismic images, the reflectors below the water layer are positioned incorrectly due to the perturbation of the eddy and this image perturbation depends linearly on the migration velocity of the layer below the corresponding reflector. The zero-offset seismic profiling throughout the affected area of the eddy shows that the maximum traveltime perturbation appears at the center of the eddy and the structure of horizontal reflectors below the water layer are distorted.


Partial differential equation synthetic seismogram seismic imaging depth perturbation 



The financial support from the National Natural Science Foundation of China (Grant No. 41074097) and the “973” programs (No. 2009CB219405-1) are gratefully acknowledge.


  1. Baer R.N. (1980), Calculations of sound propagation through an eddy, Journal Acoust. Soc. Am. 67, 1180–1185.Google Scholar
  2. Benitez-Nelson C.R., McGillicuddy D.J. (2008), Mesoscale Physical Biological Biogeochemical Linkages in the Open Ocean: Results from the EFLUX and EDDIES Programs, Deep Sea Research Part II. 55, 1133–1138.Google Scholar
  3. Biescas B., Sallare S.V., Pelegr J.L., et al. (2008), Imaging meddy fine structure using multichannel seismic reflection data, Geophysical Research Letters. 35, L11609, doi: 10.1029/2008GL033971.
  4. Dong C.Z., Song H.B., Bai Y., et al. (2010), The latest development of seismic oceanography, Progress in Geophys (in Chinese). 25, 109–123.Google Scholar
  5. Gonella J., Michon D. (1988), Deep internal waves measured by seismic reflection with in the eastern Atlantic water mass (in French with English abstract), Comptes Renduse Academie Des Sciences (SeriesIIA). 306, 781–787.Google Scholar
  6. Henrick R.F., Jacobson M.J., Siegmann W.L. (1980), General effects of currents and sound speed variations on short range acoustic transmission in cyclonic eddies, Journal Acoust. Soc. Am. 67, 121–134.Google Scholar
  7. Henrick R.F., Siegmann W.L., Jacobson M.J. (1977), General analysis of ocean eddy effects for sound transmission applications, Journal Acoust. Soc. Am. 62, 860–870.Google Scholar
  8. Holbrook W.S., Paramo P., Pearse S., et al. (2003), Thermohaline fine structure in an oceanographic front from seismic reflection profiling, Science. 301, 821–824.Google Scholar
  9. Hough G., Green J., Fish P., et al . (2011), A geomorphological mapping approach for the assessment of seabed geohazards and risk, Mar Geophys Res. 32, 151–162.Google Scholar
  10. Hu Y., Liu H.S., Chen J., Xu J. (2009), Recent progress in seismic oceanography, Advance in Earth Science. 24, 1094–1104.Google Scholar
  11. Jensen F.B., Kuperman W.A., Porter M.B., et al. Computational Ocean Acoustics, (Springer, New York 2000).Google Scholar
  12. Jian Y.J., Zhang J., Liu Q.S., Wang Y.F. (2009), Effect of mesoscale eddies on underwater sound propagation, Applied Acoustics. 70, 432–440.Google Scholar
  13. Kormann J., Cobo P., Biescas B., et al. (2010), Synthetic modelling of acoustical propagation applied to seismic oceanography experiments, Geophysical Research Letters. 37, L00D90, doi:  10.1029/2009GL041763.
  14. Kormann J., Cobo P., Prieto A. (2008), Perfectly matched layers for modelling seismic oceanography experiments, Journal of Sound and Vibration. 317, 354–365.Google Scholar
  15. Kormann, J., Cobo P., Recuero M., Biescas B., Sallarés V. (2009), Modelling seismic oceanography experiments by using first- and second- order complex frequency shifted perfectly matched layers, Acta Acust. Acust. 95, 1104–1111, doi: 10.3813/AAA.918242.
  16. Krahmann G., Brandt P., Klaeschen D., Reston T. (2008), Mid-depth internal wave energy off the Iberian Peninsula estimated from seismic reflection data, J. Geophys. Res. 113, C12016, doi: 10.1029/2007JC00467.
  17. Liu Q.H., Tao J. (1997), The perfectly matched layer for acoustics waves in absorptive media, Journal Acoust. Soc. Am. 102, 2072–2084.Google Scholar
  18. Nysen P.A., Power P.S. (1978), Sound propagation through an East Australian Current eddy, Journal Acoust. Soc. Am. 63, 1381–1388.Google Scholar
  19. Pinheiro L.M., Song H., Ruddick B., Dubert J. (2010), Detailed 2-D imaging of the Mediterranean outflow and meddies off W Iberia from multichannel seismic data, Journal of Marine Systems, 79, 89–100.Google Scholar
  20. Robertson J.S., Siegmann W.L., Jacobson M.J. (1985), Current and current shear effects in the parabolic approximation for underwater sound channels, Journal Acoust. Soc. Am. 77, 1768–1780.Google Scholar
  21. Song H.B., Dong C.Z., Chen L., Song Y. (2008), Reflection seismic methods for studying physical oceanography: Introduction of seismic oceanography, Progress in Geophys (in Chinese). 23, 1156–1164.Google Scholar
  22. Song H.B., Luis P., Wang D.X., et al. (2009), Seismic images of ocean meso-scale eddies and internal waves, Chinese Journal Of Geophysics. 52, 2775–2780.Google Scholar
  23. Temkin S., Elements of Acoustics, (Wiley, New York 1981).Google Scholar
  24. Vartanyan G.S. (2010), Regional geodynamic monitoring system for ensuring safety in geological and exploratory production of oil and gas, Atmospheric and Oceanic Physics. 46, 952–964.Google Scholar
  25. Wood W.T., Holbrook W.S., Sen M.K., et al. (2008), Full wave form inversion of reflection seismic data for ocean temperature profiles, Geophysical Research Letters. 35, L04608, doi:  10.1029/2007GL032359.
  26. Wu P.M., Guo X.G., Wu R.S. (2001), Analyses of sound velocity field in southwest sea area off Hengchun of Taiwan, J Oceanogr Taiwan Strait (in Chinese). 20, 279–286.Google Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Laboratory of Environment Mechanics, Institute of MechanicsChinese Academy of SciencesBeijingChina

Personalised recommendations