Pure and Applied Geophysics

, Volume 169, Issue 8, pp 1463–1482 | Cite as

A Quantitative Assessment of DInSAR Measurements of Interseismic Deformation: The Southern San Andreas Fault Case Study

  • Mariarosaria Manzo
  • Yuri Fialko
  • Francesco Casu
  • Antonio Pepe
  • Riccardo LanariEmail author


We investigate the capabilities and limitations of the Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques, in particular of the Small BAseline Subset (SBAS) approach, to measure surface deformation in active seismogenetic areas. The DInSAR analysis of low-amplitude, long-wavelength deformation, such as that due to interseismic strain accumulation, is limited by intrinsic trade-offs between deformation signals and orbital uncertainties of SAR platforms in their contributions to the interferometric phases, the latter being typically well approximated by phase ramps. Such trade-offs can be substantially reduced by employing auxiliary measurements of the long-wavelength velocity field. We use continuous Global Positioning System (GPS) measurements from a properly distributed set of stations to perform a pre-filtering operation of the available DInSAR interferograms. In particular, the GPS measurements are used to estimate the secular velocity signal, approximated by a spatial ramp within the azimuth-range radar imaging plane; the phase ramps derived from the GPS data are then subtracted from the available set of DInSAR interferograms. This pre-filtering step allows us to compensate for the major component of the long-wavelength range change that, within the SBAS procedure, might be wrongly interpreted and filtered out as orbital phase ramps. With this correction, the final results are obtained by simply adding the pre-filtered long-wavelength deformation signal to the SBAS retrieved time series. The proposed approach has been applied to a set of ERS-1/2 SAR data acquired during the 1992–2006 time interval over a 200 × 200 km area around the Coachella Valley section of the San Andreas Fault in Southern California, USA. We present results of the comparison between the SBAS and the Line Of Sight (LOS)—projected GPS time series of the USGC/PBO network, as well as the mean LOS velocity fields derived using SBAS, GPS and stacking techniques. Our analysis demonstrates the effectiveness of the presented approach and provides a quantitative assessment of the accuracy of DInSAR measurements of interseismic deformation in a tectonically active area.


Deformation time series differential SAR interferometry Small BAseline Subset (SBAS) interseismic deformation San Andreas Fault 



This work has partially been supported by ASI, the Italian DPC, NASA (NNX09AD23G) and USGS (G09AP00025). ERS SAR data used in this study are copyright of ESA, acquired via the WInSAR Consortium ( We thank the Technical University of Delft, The Netherlands, for precise ERS-1/2 orbits. SRTM digital elevation data were produced by NASA and distributed by USGS. Finally, we thank S. Guarino, F. Parisi and M.C. Rasulo for their technical support.


  1. Amelung, F., Galloway, D.L., Bell, J.W., Zebker, H.A., and Laczniak, R.J. (1999), Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation, Geology, 27, 483–486.Google Scholar
  2. Bennett, R. A., Rodi, W. and Reilinger, R. E. (1996), Global positioning system constraints on fault slip rates in southern California and northern Baja, Mexico, J Geophys Res 101, 21943–21960.Google Scholar
  3. Berardino, P., Fornaro, G., Lanari, R. and Sansosti, E. (2002), A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE Trans. Geosci Remote Sens 40, 2375–2383.Google Scholar
  4. Biggs, J., Wright, T., Lu, Z., and Parsons, B. (2007), Multi-interferogram method for measuring interseismic deformation: Denali fault, Alaska, Geophys J Int 170, 1165–1179.Google Scholar
  5. Burgmann, R., Hilley, G., Ferretti, A. and Novali F. (2006), Resolving vertical tectonics in the San Francisco Bay Area from permanent scatterer InSAR and GPS analysis, Geology 34, 221–224.Google Scholar
  6. Casu, F., Manzo, M., and Lanari, R. (2006), A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data, Remote Sens Environ 102(3–4), 195–210, doi: 10.1016/j.rse.2006.01.023.
  7. Casu, F., Manzo, M., Pepe, A., and Lanari, R. (2008), SBAS-DInSAR Analysis of Very Extended Areas: First Results on a 60,000 km2 Test Site, IEEE Geosci Remote Sens Lett 5 3, doi: 10.1109/LGRS.2008.916199.
  8. Chen, C. W., and Zebker, H. A. (2002), Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models, IEEE Transactions on Geoscience and Remote Sensing 40, pp. 1709–1719.Google Scholar
  9. DeMets, C., Gordon, R. G., Argus, D. F., and Stein, S. (1990), Current plate motions, Geophys. J Int 101, 425–478.Google Scholar
  10. Ferretti, A., Prati, C., and Rocca, F.(2000), Non-linear subsidence rate estimation using permanent scatterers in differential SAR interferometry, IEEE Transaction on Geoscience and Remote Sensing 38, 5.Google Scholar
  11. Fialko, Y., Simons, M., and Agnew, D. (2001), The complete (3-D) surface displacement field in the epicentral area of the 1999 Mw7.1 Hector Mine earthquake, California, from space geodetic observations, Geophys Res Lett 28, 3063–3066.Google Scholar
  12. Fialko, Y. (2004), Evidence of fluid-filled upper crust from observations of post-seismic deformation due to the 1992 Mw7.3 Landers earthquake, J Geophys Res, 109, B08401, doi: 10.1029/2003JB002985.
  13. Fialko, Y. (2006), Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system, Nature, 441, doi: 10.1038/nature04797, 968–971.
  14. Gabriel, A. K., Goldstein, R. M., and Zebker, H. A. (1989), Mapping small elevation changes over large areas: Differential interferometry, J Geophys Res 94, 9183–9191.Google Scholar
  15. Goldstein, R. M. (1995), Atmospheric limitations to repeat-track radar interferometry, Geophys Res Lett 22, 2517−2520.Google Scholar
  16. Gourmelen, N., Amelung F., and Lanari R. (2010), InSAR–GPS Integration: inter-seismic strain accumulation across the hunter mountain fault in the eastern California shear zone, J Geophys Res doi: 10.1029/2009JB007064, in press.
  17. Hooper, A., Zebker, H., Segall, P., and Kampes, B. (2004), A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers, Geophys Res Lett 31, L23611, doi: 10.1029/2004GL021737.
  18. Hooper, A. (2008), A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches, Geophys Res Lett 35 L16302, doi: 10.1029/2008GL034654.
  19. Johnson, H. O., Agnew, D. C., and Wyatt, F. K. (1994), Present-day crustal deformation in southern California, J Geophys Res 99, 23951–23974.Google Scholar
  20. Lanari, R., Mora, O., Manunta, M., Mallorquí, J. J., Berardino, P., and Sansosti, E. (2004a), A small baseline approach for investigating deformations on full resolution differential SAR interferograms, IEEE Trans Geosci Remote Sens 42, 7.Google Scholar
  21. Lanari, R., Lundgren, P., Manzo, M., and Casu F. (2004b), Satellite radar interferometry time series analysis of surface deformation for Los Angeles, California, Geophys Res Lett 31, L23613, doi: 10.1029/2004GL021294.
  22. Lanari, R., Casu, F., Manzo, M., and Lundgren, P. (2007a), Application of the SBAS-DInSAR technique to fault creep: a case study of the Hayward fault, California, Remote Sens Environ J 109, 1, 20–28, doi: 10.1016/j.rse.2006.12.003.
  23. Lanari, R., Casu, F., Manzo, M., Zeni, G., Berardino, P., Manunta, M., and Pepe, A. (2007b), An Overview of the Small BAseline Subset Algorithm: a DInSAR Technique for Surface Deformation Analysis, Pure Appl Geophys (PAGEOPH), 164, 4, 637–661, doi: 10.1007/s00024-007-0192-9.
  24. Lundgren, P. E., Hetland, A., Liu, Z. and Fielding, E. J. (2009), Southern San Andreas-San Jacinto fault system slip rates estimated from earthquake cycle models constrained by GPS and interferometric synthetic aperture radar observations, J Geophys Res 114, B02403, doi: 10.1029/2008JB005,996.
  25. Lyons, S. and Sandwell, D. (2003), Fault creep along the southern San Andreas from interferometric synthetic aperture radar, permanent scatterers, and stacking, J Geophys Res 108, doi: 10:1029/2002JB001831.
  26. Manzo, M., Ricciardi, G. P., Casu, F., Ventura, G., Zeni, G., Borgström, S., Berardino, P., Del Gaudio, C., and Lanari, R. (2006), Surface deformation analysis in the Ischia island (Italy) based on spaceborne radar interferometry, J Volcanol Geotherm Res 151, 399–416, doi: 10.1016/j.jvolgeores.2005.09.010.Google Scholar
  27. Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., and Rabaute, T. (1993), The displacement field of the Landers earthquake mapped by radar interferometry, Nature, 364, 138–142.Google Scholar
  28. Massonnet, D., Briole, P., and Arnaud, A. (1995), Deflation of Mount Etna monitored by spaceborne radar interferometry, Nature, 375, 567–570.Google Scholar
  29. Miranda, N., Rosich, B., Santella, C., and Grion, M. (2003), Review of the impact of ERS-2 piloting modes on the SAR Doppler stability, Proceedings Fringe ‘03, 1-5 December 2003, Frascati, Italy.Google Scholar
  30. Mora, O., Mallorqui, J. J., and Broquetas, A. (2003), Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images, IEEE Trans Geosci Remote Sens 41, 2243–2253.Google Scholar
  31. Neri, M., Casu, F., Acocella, V., Solaro, G., Pepe, S., Berardino, P., Sansosti, E., Caltabiano, T., and Lundgren, P. (2009), Deformation and eruptions at Mt. Etna (Italy): A lesson from 15 years of observations, Geophy Res Lett 36, doi: 10.1029/2008GL036151.
  32. Peltzer, G., and Rosen, P.A. (1995), Surface displacement of the 17 May 1993 Eureka Valley earhtquake observed by SAR interferometry, Science 268, 1333–1336.Google Scholar
  33. Peltzer, G., Crampe, F., Hensley, S., and Rosen, P. (2001), Transient strain accumulation and fault interaction in the Eastern California shear zone, Geology 29, 975–978.Google Scholar
  34. Pepe, A., and Lanari, R. (2006), On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms, IEEE Trans Geosci Remote Sens 44, 9, 2374–2383.Google Scholar
  35. Prati, C., Ferretti, A., and Perissin, D. (2010), Recent advances on surface ground deformation measurement by means of repeated space-borne SAR observations, J Geodynamics 49, 161–170.Google Scholar
  36. Rignot, E. (1998), Fast recession of a west Antarctic glacier, Science, 281, 549–551.Google Scholar
  37. Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez, E., et al. (2000). Synthetic aperture radar interferometry, IEEE Proceedings, 88, 333–376.Google Scholar
  38. Rosen, P. A., Hensley, S., Gurrola, E., Rogez, F., Chan, S., and Martin, J. (2001), SRTM C-band topographic data quality assessment and calibration activities, Proc. of IGARSS’01, 739–741.Google Scholar
  39. Thatcher, W., and Lisowski, M. (1987), Long-term seismic potential of the San-Andreas fault southeast of San-Francisco, California J Geophys Res 92, 4771–4784.Google Scholar
  40. Tizzani, P., Berardino, P., Casu, F., Euillades, P., Manzo, M., Ricciardi, G. P., Zeni, G., and Lanari, R. (2007), Surface deformation of Long Valley caldera and Mono Basin, California, investigated with the SBAS-InSAR approach, Remote Sens Environ J 108, 277–289, doi: 10.1016/j.rse.2006.11.015.
  41. Weldon, R.J., Fumal T. E., Biasi G. P., Scharer K. M. (2005), Geophysics: past and future earthquakes on the San Andreas fault, Science, 308, 5724, 966–967.Google Scholar
  42. Werner, C., Wegmüller, U., Strozzi, T. and Wiesmann, A. (2003), Interferometric point target analysis for deformation mapping, Proc. IGARSS’03, Toulouse (France), 4362–4364.Google Scholar
  43. Working Group on California Earthquake Probabilities (1995), Seismic hazards in southern California: Probable earthquakes, 1994–2024. Bull Seism Soc Am 85, 379–439.Google Scholar
  44. Wright, T. J., Parsons, B., England, P. C., and Fielding, E. J. (2004), InSAR observations of low slip rates on the major faults of western Tibet, Science 305, 236–239.Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Mariarosaria Manzo
    • 1
  • Yuri Fialko
    • 2
  • Francesco Casu
    • 1
  • Antonio Pepe
    • 1
  • Riccardo Lanari
    • 1
    Email author
  1. 1.Istituto per il Rilevamento Elettromagnetico dell’Ambiente (IREA)National Council of Research (CNR)NaplesItaly
  2. 2.Institute of Geophysics and Planetary PhysicsScripps Institution of Oceanography, University of California San DiegoLa JollaUSA

Personalised recommendations