Skip to main content
Log in

Crustal Structure of the Korean Peninsula Using Surface Wave Dispersion and Numerical Modeling

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Surface wave dispersion is studied to obtain the 1-D average velocity structure of the crust in the Korean Peninsula by inverting group- and phase-velocities jointly. Group velocities of short-period Rayleigh and Love waves are obtained from cross-correlations of seismic noise. Multiple-filter analysis is used to extract the group velocities at periods between 0.5 and 20 s. Phase velocities of Rayleigh waves in 10- and 50-s periods are obtained by applying the two-station method to teleseismic data. Dispersion curves of all group and phase velocities are jointly inverted for the 1-D average model of the Korean Peninsula. The resultant model from surface wave analysis can be used as an initial model for numerical modeling of observations of North Korean events for a velocity model appropriated to the Korean Peninsula. The iterative process is focused especially on the surface sedimentary layer in the numerical modeling. The final model, modified by numerical modeling from the initial model, indicates that the crust shear wave velocity increases with depth from 2.16 km/s for a 2-km-thick surface sedimentary layer to 3.79 km/s at a Moho depth of 33 km, and the upper mantle has a velocity of 4.70 km/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bensen, G.D., Barmin, M.P., Levshin, A.L., Lin, F., Moschetti, M.P., Shapiro, N.M., Yang, Y., and Ritzwoller, M.H. (2007) Processing ambient noise seismic data to obtain reliable broadband surface wave dispersion measurements, Geophys. J. Int., 169, 1239–1260. doi:10.1111/j.1365–246X.2007.03374.x.

  • Bensen, G.D., Ritzwoller, M.H., and Shapiro, N.M. (2008) Broadband ambient noise surface wave tomography across the United States, J. Geophys. Res., 113, B05305. doi:10.1029/2007JB005248.

  • Brzak, K., Gu, Y.J., Keler, A.O., Steckler, M., and Lerner-Lam, A. (2009) Migration imaging and forward modeling of microseismic noise sources near southern Italy, Geochem. Geophys. Geosyst., 10, Q01012. doi:10.1029/2008GC002234.

  • Campillo, M., and Paul, A. (2003) Long range correlations in the diffuse seismic Coda, Science 299, 547–549.

  • Cho, K.H., and Lee, K. (2006) Dispersion of Rayleigh waves in the Korean Peninsula, Journal of the Korean Geophysical Society, Vol. 9, No. 3, P. 231–240.

  • Cho, K.H., Hermann, R.B., Ammon, C.J., and Lee, K. (2007) Imaging the upper crust of the Korean Peninsula by surface-wave tomography, Bull. Seism. Soc. Am., Vol. 97, P. 198–207.

  • Choi, J., Kang, T., and Baag, C. (2009), Three-dimensional surface wave tomography for the upper crustal velocity structure of southern Korea using seismic noise correlations, Geosciences Journal, Vol. 13, No. 4, P. 423–432. doi:10.1007/s12303-009-0040-2.

  • Cristiano, L., Petrosino, S., Saccorotti, G., Ohrnberger, M., and Scarpa, R. (2010) Shear-wave velocity structure at Mt. Etna from inversion of Rayleigh-wave dispersion patterns (2 s < T < 20 s), Annals of Geophysics, 53, 2, 69–78. doi:10.4401/ag-4574.

  • Cupillard, P., and Capdeville, Y. (2010) On the amplitude of surface waves obtained by noise correlation and the capability to recover the attenuation: a numerical approach. doi:10.1111/j.1365-246X.2010.04586.x.

  • Guo, Z., Gao, X., Yao, H., Li, J., and Wang, W. (2009) Midcrustal low-velocity layer beneath the central Himalaya and southern Tibet revealed by ambient noise array tomography, Geochem. Geophys. Geosyst., 10, Q05007. doi:10.1029/2009GC002458.

  • Herrmann, R.B. (1973) Some aspects of band-pass filtering of surface waves, Bull. Seism. Soc. Am., Vol. 63, P. 663–671.

  • Herrmann, R.B., and Ammon, C.J. (2004), Surface waves, receiver functions and crustal structure, in Computer Programs in Seismology, Version 3.30, Saint Louis University. http://www.eas.slu.edu/People/RBHerrmann/CPS330.html (last accessed December 12, 2006).

  • Hudson, J.A. (1969) A quantitative evaluation of seismic signals at teleseismic distances – II. Body waves and surface waves from an extended source, Geophys. J., 18, 353–370.

  • Kim, S.K. (1995), A study on the crustal structure of the Korean Peninsula, Jour. Geol. Soc. Korea, Vol. 31, No. 4, P. 393–403 (in Korean).

  • Kim, S.J., and Kim, S.G. (1983) A study the crustal structure of South Korea by using seismic waves, J. Korean Inst. Mining Geol., Vol. 16, No. 1, P. 51-61 (in Korean).

  • Lee, K. (1979) On crustal structure of the Korean peninsula, J. Geo. Soc. Korea, Vol. 15, P. 253–258.

  • Li, H.Y., Su, W., Wang, C.Y., and Huang, Z.X. (2009) Ambient noise Rayleigh wave tomography in western Sichuan and eastern Tibet, Earth Planet. Sci. Lett., 282, 201–211. doi:10.1016/j.epsl.2009.03.021.

  • Li, H.Y., Bernardi, F., and Michelini, A. (2010) Surface wave dispersion measurements from ambient seismic noise analysis in Italy, Vol. 180, P. 1242–1252. doi:10.1111/j.1365-246X.2009.04476.x.

  • Lin, F., Ritzwoller, M.H., Townend, J., Savage, M., and Bannister, S. (2007), Ambient noise Rayleigh wave tomography of New Zealand, Geophys. J. Int., 170(2). doi:10.1111/j.1365-246X.2007.03414.x.

  • Ma, S., Prieto, G.A., and Beroza, G.C. (2008), Testing community velocity models for Southern California using the ambient seismic field, Bull. Seism. Soc. Am., Vol. 98, P. 2694–2714.

  • Marzorati, S., and Bindi, D. (2008) Characteristics of Ambient Noise Cross Correlations in Northern Italy within the Frequency Range of 0.1–0.6 Hz, Bull. Seism. Soc. Am., Vol. 98, P. 1389–1398.

  • Moschetti, M.P., Ritzwoller, M.H., and Shapiro, N.M. (2007) Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps, Geochem. Geophys. Geosyst., 8, Q08010. doi:10.1029/2007GC001655.

  • Nishida, K., Kawakatsu, H., and Obara, K. (2008) Three-dimensional crustal S wave velocity structure in Japan using microseismic data recorded by Hi-net tiltmeters, J. Geophys. Res., Vol. 113, B10302. doi:10.1029/2007JB005395.

  • Picozzi, M., Parolai, S., Bindi, D., and Strollo, A. (2009) Characterization of shallow geology by high-frequency seismic noise tomography, Geophys. J. Int., 176, 164–174.

  • Pilant, W.L. (1979), Elastic waves in the earth, Elsevier, Amsterdam.

  • Shapiro, N.M., and Campillo, M. (2004) Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise, Geophys. Res. Lett. 31, L07614.

  • Song, S.G., and Lee, K. (2001), Crustal structure of the Korean Peninsula by travel time inversion of local earthquakes, J. Geophys. Soc. Korea, Vol. 4, P. 21–33.

  • Stachnik, J.C., Dueker, K., Schutt, D.L., and Yuan, H. (2008) Imaging Yellowstone plume-lithosphere interactions from inversion of ballistic and diffusive Rayleigh wave dispersion and crustal thickness data, Geochem. Geophys. Geosys., 9. doi:10.1029/2008GC001992.

  • Tsai, V.C. (2009) On establishing the accuracy of noise tomography traveltime measurements in a realistic medium, Geophys. J. Int., 178(3), 1555–1564. doi:10.1111/j.1365-246X.2009.04239.x.

  • Wapenaar, C.P.A. (2004) Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by cross correlation, Phys. Rev. Letters, Vol. 95, 254301.

  • Yang, Y., and Ritzwoller, M.H. (2008a) Characteristics of ambient seismic noise as a source for surface wave tomography, Geochem. Geophys. Geosys., 9. doi:10.1029/2007GC001814.

  • Yang, Y., Ritzwoller, M.H., Levshin, A.L., and Shapiro, N.M. (2007), Ambient noise Rayleigh wave tomography across Europe, Geophys. J. Int., 168, 259–274. doi:10.1111/j.1365–246X.2006.03203.x.

  • Yang, Y., and Ritzwoller, M.H. (2008b) Teleseismic surface wave tomography in the western U.S. using the Transportable Array component of USArray, Geophys. Res. Lett., 35, L04308. doi:10.1029/2007GL032278.

  • Yang, Y. et al. (2010) Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography, Geochem. Geophys. Geosyst., 11, Q08010. doi:10.1029/2010GC003119.

  • Yao, H., and van der Hilst, R.D. (2009) Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to SE Tibet, Geophys. J. Int., 179, 1113–1132. doi:10.1111/j.1365-246X.2009.04329.x.

  • Yoo, H.J., Herrmann, R.B., Cho, K.H., and Lee, K. (2007), Imaging the three-dimensional crust of the Korean Peninsula by joint inversion of surface-wave dispersion and teleseismic receiver functions, Bull. Seism. Soc. Am., 97, 1001–1011.

Download references

Acknowledgments

This study would not have been possible without the digital data sets provided by the Korea Institute of Geoscience and Mineral Resources (KIGAM) and the Korea Meteorological Administration (KMA). This study was done by support of the Basic Research Project of KIGAM funded by the Ministry of Knowledge Economy of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Hyun Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, K.H., Lee, SH. & Kang, IB. Crustal Structure of the Korean Peninsula Using Surface Wave Dispersion and Numerical Modeling. Pure Appl. Geophys. 168, 1587–1598 (2011). https://doi.org/10.1007/s00024-011-0262-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-011-0262-x

Keywords

Navigation