Imaging the Moho and Subducted Oceanic Crust at the Isthmus of Tehuantepec, Mexico, from Receiver Functions

Abstract

Using teleseismic data recorded along a transect, which we call VEOX (for Veracruz-Oaxaca seismic line), of 46 broadband stations installed across the Isthmus of Tehuantepec in southern Mexico, we obtained receiver functions and stacked them to study the Moho topography and back projected them to visualize the subducted slab geometry beneath the isthmus. We observed a back-azimuth dependent Moho thickness across the transect, particularly beneath the Los Tuxtlas Volcanic Field. Also, we observed the Cocos plate which subducts with an angle of 26° between 140 and 310 km from the trench. Comparison with regional seismicity indicates that it occurs below the oceanic crust.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abers, G. A., MacKenzie, L. S., Rondenay, S., Zhang, Z., Wech, A. G., and Creager, K. (2009), Imaging the source region of Cascadia tremor and intermediate-depth earthquakes, Geology, 37, 1119–1122.

  2. Bravo, H., Rebollar, C., Uribe, A., and Jiménez, O. (2004), Geometry and state of stress of the Wadati-Benioff zone in the Gulf of Tehuantepec, J. Geophys. Res., 109. doi:10.1029/2003JB002854

  3. Campillo, M., Singh, S. K., Shapiro, N., Pacheco, J., and Hermann, R. B. (1996), Crustal structure of the Mexican volcanic belt based on group velocity dispersion, Geofísica Internacional, 35, 361–370.

  4. Castro-Artola, O. A. (2010), Caracterización de la geometría de la zona de Benioff con una red densa de banda ancha en el Istmo de Tehuantepec, Bachelor’s Thesis, Facultad de Ingeniería, Universidad Nacional Autónoma de México, México, 65 pp.

  5. Chevrot, S., and Girardin, N. (2000), On the detection and identification of converted and reflected phases from receiver functions, Geophys. J. Int., 141, 801–808.

  6. Clayton, R. W., and Wiggins, R. A. (1976), Source shape estimation and deconvolution of teleseismic body waves, Geophys, J. R. Astron. Soc., 47, 151–177.

  7. Cleveland, W. S., Visualising Data, (Hobart Press, 1993).

  8. Couch, R., and Woodcock, S. (1981), Gravity and structure of the continental margins of Southwestern Mexico and Northern Guatemala, J. Geophys. Res., 86(B3), 1829–1840.

  9. DeMets, C., Gordon, R. G., Argus, D. F., and Stein, S. (1990), Current plate motions, Geophys. J. Int., 101, 425–478.

  10. Dickinson, W. (1997), Tectonic implications of Cenozoic volcanism in coastal California, Geol. Soc. Am. Bull., 109, 936–954.

  11. Espíndola Castro, V. H. (2009), Modelos de velocidad cortical utilizando funciones de receptor aplicado a estaciones de banda ancha del SSN, Mexico, Ph. D. Thesis, Instituto de Geofísica, Universidad Nacional Autónoma de México, D.F., Mexico.

  12. Ferrari, L. (2004), Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico, Geology, 32, 77–80. doi:10.1130/G19887.1

  13. Gómez-Tuena, A., Langmuir, C. H., Goldstein, S. L., Straub, S. M., and Ortega-Gutiérrez, F. (2007), Geochemical evidence for slab melting in the Trans-Mexican Volcanic Belt, J. Petrol., 48, 537–562.

  14. Gorbatov, A., and Fukao, Y. (2005), Tomographic search for missing link between the ancient Farallon subduction and the present Cocos subduction, Geophys. J. Int., 160, 849–854.

  15. Guzmán-Speziale, M., and Meneses-Rocha, J. J. (2000), The North AmericaCaribbean plate boundary west of the Motagua-Polochic fault system: a fault jog in southeastern Mexico, J. S. Am. Earth. Sci., 13, 459–468.

  16. Husker, A., and Davis, P. M. (2009), Tomography and thermal state of the Cocos plate subduction beneath Mexico City, J. Geophys. Res., 114. doi:10.1029/2008JB006039

  17. Kennet, B. L. N., and Engdahl, E. R. (1991), Travel times for global earthquake location and phase identification, Geophys. J. Int., 105, 429–465.

  18. Kikuchi, M., and Kanamori, H. (1982), Inversion of complex body waves, Bull. Seism. Soc. Am., 72, 491–506.

  19. Klitgord, K. D., and Mammerickx, J. (1982), Northern east Pacific rise: magnetic anomaly and bathymetric framework, J. Geophys. Res., 87, 6725–6750.

  20. Kostoglodov, V., Bandy, W., Dominguez, J., Mena, M. (1996), Gravity and seismicity over the Guerrero seismic gap, Mexico, Geophys. Res. Lett., 23, 3385–3388.

  21. Langston, C. A. (1979), Structure under Mount Rainier, Washington, inferred from teleseismic body waves, J. Geophys. Res., 84, 4749–4762.

  22. Manea, V. C., and Manea, M. (2006), Origin of modern Chiapanecan volcanic arc in southern Mexico inferred from thermal models. In (Rose, W. I., Bluth, G. J. S., Carr, M. J., Ewert, W., Patiño, L. C., and Vallance, eds), Volcanic Hazards in Central America. Geol. Soc. Am., 411, 27–38.

  23. Manea, M., Manea, V.C., and Kostoglodov, V. (2003), Sediment fill in the Middle America trench inferred from gravity anomalies, Geofísica Internacional, 42(4), 603–612.

  24. Manea, M., Manea, V.C., Kostoglodov, V., and Guzman-Speziale, M. (2005a), Elastic thickness of the oceanic lithosphere beneath Tehuantepec Ridge, Geofísica Internacional, 44(2), 157–168.

  25. Manea, M., Manea, V. C., Ferrari, L., Kostoglodov, V., and Bandy, W. (2005b), Tectonic evolution of the Tehuantepec ridge, Earth Planet. Sci., 238, 64–77.

  26. Nelson S. A., and Gonzalez-Caver, E. (1992), K-Ar dating of the Tuxtla volcanic field, Veracruz, Mexico, Bull Volcanol, 55, 85–96.

  27. Ortega-Gutiérez, F., Mitre-Salazar, L. M., Roldán-Quintana, J., Aranda-Gómez, J. J., Morán-Zenteno, D., Alanizlvarez, S. A., and Nieto-Samaniego, A. F. (1992), Texto explicativo de la quinta edicion de la carta geologica de la republica Mexicana, escala 1:2,000,000, Universidad Nacional Autónoma de México, Instituto de Geología, and Secretaría de Energía, Minas e Industria Paraestatal, Consejo de Recursos Minerales, Mexico DF.

  28. Pacheco, J. F., and Singh, S. K. (2010), Seismicity and state of stress in Guerrero segment of the Mexican subduction zone, J. Geophys. Res., 115, B01303.

  29. Pardo, M., and Suárez, G. (1995), Shape of the subducted Rivera and Cocos plates in southern Mexico, seismic and tectonic implications, J. Geophys. Res., 100, 12357–12373.

  30. Pérez-Campos, X. (2008), MASE: Undergraduate research and outreach as part of a large project, Seismol. Res. Lett., 79, 232–236.

  31. Pérez-Campos, X., Kim, Y., Husker, A., Davis P.M., Clayton, R. W., Iglesias, A., Pacheco, J., Singh, S. K., Manea, V. C., and Gurnis, M. (2008), Horizontal subduction and truncation of the Cocos plate beneath central Mexico, Geophys Res. Lett., 35. doi:10.1029/2008GL035127

  32. Persaud, P., Pérez-Campos, X., and Clayton, R. W. (2007), Crustal thickness variations in the margins of the Gulf of California from receiver functions, Geophys. J. Int., 170, 687–699.

  33. Ponce, L., Gaulon, R., Suárez, G., and Lomas, E. (1992), Geometry and state of stress of the downgoing Cocos plate in the Isthmus of Tehuantepec, Mexico, Geophys. Res. Lett., 19, 773–776.

  34. Preston, L. A., Creager, K. C., Crosson, R. S., Brocher, T. M., and Trehu, A. M. (2003), Intraslab earthquakes: Dehydration of the Cascadia slab, Science, 302, 1197–1200.

  35. Suárez, G., Monfret, T., Wittlinger, G., and David, C. (1990), Geometry of subduction and depth of the seismogenic zone in the Guerrero gap, Mexico, Nature, 345, 336–338.

  36. Tonegawa, T., Hirahara, K., and Shibutani, T. (2005), Detailed structure of the upper mantle discontinuities around the Japan Subduction zone imaged by receiver function analyses, Earth Planets Space, 57, 5–14.

  37. Turcotte, D. L., and Schubert, G., Geodynamics, (Cambridge Univ. Press, 2001).

  38. Urrutia-Fucugauchi, J., and Flores-Ruiz, J. (1996), Bouguer gravity anomalies and regional crustal structure in Central Mexico, Int. Geol. Rev., 38(2), 176–194.

    Google Scholar 

  39. Valdés, C. M., Mooney, W. D., Singh, S. K., Meyer, R. P., Lomnitz, C., Luetgert, J. H., Helsley, C. E., Lewis, B. T. R., and Mena, M. (1986), Crustal structure of Oaxaca, Mexico, from seismic refraction measurements, Bull. Seism. Soc. Am., 76(2), 574–563.

  40. Wessel, P., and Smith, W. H. F. (1991), Free software helps map and display data, EOS, Trans. Am. Geophys. Un., 72, 445–446.

  41. Yamauchi, M., Hirahara K., and Shibutani, T. (2003), High resolution receiver function imaging of the seismic velocity discontinuities in the crust and uppermost mantle beneath southwest Japan, Earth Planets Space, 55, 59–64.

  42. Zamora-Camacho A., Espíndola V. H., Pacheco J. F., Espíndola J. M., and Godínez M. L. (2010), Crustal thickness at the Tuxtla Volcanic Field, (Veracruz, Mexico) from receiver functions. Phys. Earth Planetary Int, 182, 1–9.

  43. Zhu, L., and Kanamori, H. (2000), Moho depth variations in southern California from Teleseismic Receiver Functions. J. Geophys. Res., 105(B2), 2969–2980.

Download references

Acknowledgments

This work was supported by the Tectonics Observatory at Caltech and Conacyt project J51566-F. The VEOX experiment was funded by the Gordon and Betty Moore Foundation. We thank O. Castro Artola for providing his relocated hypocenter data and all the volunteers who contributed their time to the field work. We thank the editor and two anonymous reviewers for valuable comments that improved the article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xyoli Pérez-Campos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Melgar, D., Pérez-Campos, X. Imaging the Moho and Subducted Oceanic Crust at the Isthmus of Tehuantepec, Mexico, from Receiver Functions. Pure Appl. Geophys. 168, 1449–1460 (2011). https://doi.org/10.1007/s00024-010-0199-5

Download citation

Keywords

  • Receiver functions
  • slab subduction
  • Moho depth