Pure and Applied Geophysics

, Volume 168, Issue 8–9, pp 1449–1460 | Cite as

Imaging the Moho and Subducted Oceanic Crust at the Isthmus of Tehuantepec, Mexico, from Receiver Functions

  • Diego Melgar
  • Xyoli Pérez-CamposEmail author


Using teleseismic data recorded along a transect, which we call VEOX (for Veracruz-Oaxaca seismic line), of 46 broadband stations installed across the Isthmus of Tehuantepec in southern Mexico, we obtained receiver functions and stacked them to study the Moho topography and back projected them to visualize the subducted slab geometry beneath the isthmus. We observed a back-azimuth dependent Moho thickness across the transect, particularly beneath the Los Tuxtlas Volcanic Field. Also, we observed the Cocos plate which subducts with an angle of 26° between 140 and 310 km from the trench. Comparison with regional seismicity indicates that it occurs below the oceanic crust.


Receiver functions slab subduction Moho depth 



This work was supported by the Tectonics Observatory at Caltech and Conacyt project J51566-F. The VEOX experiment was funded by the Gordon and Betty Moore Foundation. We thank O. Castro Artola for providing his relocated hypocenter data and all the volunteers who contributed their time to the field work. We thank the editor and two anonymous reviewers for valuable comments that improved the article.


  1. Abers, G. A., MacKenzie, L. S., Rondenay, S., Zhang, Z., Wech, A. G., and Creager, K. (2009), Imaging the source region of Cascadia tremor and intermediate-depth earthquakes, Geology, 37, 1119–1122.Google Scholar
  2. Bravo, H., Rebollar, C., Uribe, A., and Jiménez, O. (2004), Geometry and state of stress of the Wadati-Benioff zone in the Gulf of Tehuantepec, J. Geophys. Res., 109. doi: 10.1029/2003JB002854
  3. Campillo, M., Singh, S. K., Shapiro, N., Pacheco, J., and Hermann, R. B. (1996), Crustal structure of the Mexican volcanic belt based on group velocity dispersion, Geofísica Internacional, 35, 361–370.Google Scholar
  4. Castro-Artola, O. A. (2010), Caracterización de la geometría de la zona de Benioff con una red densa de banda ancha en el Istmo de Tehuantepec, Bachelor’s Thesis, Facultad de Ingeniería, Universidad Nacional Autónoma de México, México, 65 pp.Google Scholar
  5. Chevrot, S., and Girardin, N. (2000), On the detection and identification of converted and reflected phases from receiver functions, Geophys. J. Int., 141, 801–808.Google Scholar
  6. Clayton, R. W., and Wiggins, R. A. (1976), Source shape estimation and deconvolution of teleseismic body waves, Geophys, J. R. Astron. Soc., 47, 151–177.Google Scholar
  7. Cleveland, W. S., Visualising Data, (Hobart Press, 1993).Google Scholar
  8. Couch, R., and Woodcock, S. (1981), Gravity and structure of the continental margins of Southwestern Mexico and Northern Guatemala, J. Geophys. Res., 86(B3), 1829–1840.Google Scholar
  9. DeMets, C., Gordon, R. G., Argus, D. F., and Stein, S. (1990), Current plate motions, Geophys. J. Int., 101, 425–478.Google Scholar
  10. Dickinson, W. (1997), Tectonic implications of Cenozoic volcanism in coastal California, Geol. Soc. Am. Bull., 109, 936–954.Google Scholar
  11. Espíndola Castro, V. H. (2009), Modelos de velocidad cortical utilizando funciones de receptor aplicado a estaciones de banda ancha del SSN, Mexico, Ph. D. Thesis, Instituto de Geofísica, Universidad Nacional Autónoma de México, D.F., Mexico.Google Scholar
  12. Ferrari, L. (2004), Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico, Geology, 32, 77–80. doi: 10.1130/G19887.1
  13. Gómez-Tuena, A., Langmuir, C. H., Goldstein, S. L., Straub, S. M., and Ortega-Gutiérrez, F. (2007), Geochemical evidence for slab melting in the Trans-Mexican Volcanic Belt, J. Petrol., 48, 537–562.Google Scholar
  14. Gorbatov, A., and Fukao, Y. (2005), Tomographic search for missing link between the ancient Farallon subduction and the present Cocos subduction, Geophys. J. Int., 160, 849–854.Google Scholar
  15. Guzmán-Speziale, M., and Meneses-Rocha, J. J. (2000), The North AmericaCaribbean plate boundary west of the Motagua-Polochic fault system: a fault jog in southeastern Mexico, J. S. Am. Earth. Sci., 13, 459–468.Google Scholar
  16. Husker, A., and Davis, P. M. (2009), Tomography and thermal state of the Cocos plate subduction beneath Mexico City, J. Geophys. Res., 114. doi: 10.1029/2008JB006039
  17. Kennet, B. L. N., and Engdahl, E. R. (1991), Travel times for global earthquake location and phase identification, Geophys. J. Int., 105, 429–465.Google Scholar
  18. Kikuchi, M., and Kanamori, H. (1982), Inversion of complex body waves, Bull. Seism. Soc. Am., 72, 491–506.Google Scholar
  19. Klitgord, K. D., and Mammerickx, J. (1982), Northern east Pacific rise: magnetic anomaly and bathymetric framework, J. Geophys. Res., 87, 6725–6750.Google Scholar
  20. Kostoglodov, V., Bandy, W., Dominguez, J., Mena, M. (1996), Gravity and seismicity over the Guerrero seismic gap, Mexico, Geophys. Res. Lett., 23, 3385–3388.Google Scholar
  21. Langston, C. A. (1979), Structure under Mount Rainier, Washington, inferred from teleseismic body waves, J. Geophys. Res., 84, 4749–4762.Google Scholar
  22. Manea, V. C., and Manea, M. (2006), Origin of modern Chiapanecan volcanic arc in southern Mexico inferred from thermal models. In (Rose, W. I., Bluth, G. J. S., Carr, M. J., Ewert, W., Patiño, L. C., and Vallance, eds), Volcanic Hazards in Central America. Geol. Soc. Am., 411, 27–38.Google Scholar
  23. Manea, M., Manea, V.C., and Kostoglodov, V. (2003), Sediment fill in the Middle America trench inferred from gravity anomalies, Geofísica Internacional, 42(4), 603–612.Google Scholar
  24. Manea, M., Manea, V.C., Kostoglodov, V., and Guzman-Speziale, M. (2005a), Elastic thickness of the oceanic lithosphere beneath Tehuantepec Ridge, Geofísica Internacional, 44(2), 157–168.Google Scholar
  25. Manea, M., Manea, V. C., Ferrari, L., Kostoglodov, V., and Bandy, W. (2005b), Tectonic evolution of the Tehuantepec ridge, Earth Planet. Sci., 238, 64–77.Google Scholar
  26. Nelson S. A., and Gonzalez-Caver, E. (1992), K-Ar dating of the Tuxtla volcanic field, Veracruz, Mexico, Bull Volcanol, 55, 85–96.Google Scholar
  27. Ortega-Gutiérez, F., Mitre-Salazar, L. M., Roldán-Quintana, J., Aranda-Gómez, J. J., Morán-Zenteno, D., Alanizlvarez, S. A., and Nieto-Samaniego, A. F. (1992), Texto explicativo de la quinta edicion de la carta geologica de la republica Mexicana, escala 1:2,000,000, Universidad Nacional Autónoma de México, Instituto de Geología, and Secretaría de Energía, Minas e Industria Paraestatal, Consejo de Recursos Minerales, Mexico DF.Google Scholar
  28. Pacheco, J. F., and Singh, S. K. (2010), Seismicity and state of stress in Guerrero segment of the Mexican subduction zone, J. Geophys. Res., 115, B01303.Google Scholar
  29. Pardo, M., and Suárez, G. (1995), Shape of the subducted Rivera and Cocos plates in southern Mexico, seismic and tectonic implications, J. Geophys. Res., 100, 12357–12373.Google Scholar
  30. Pérez-Campos, X. (2008), MASE: Undergraduate research and outreach as part of a large project, Seismol. Res. Lett., 79, 232–236.Google Scholar
  31. Pérez-Campos, X., Kim, Y., Husker, A., Davis P.M., Clayton, R. W., Iglesias, A., Pacheco, J., Singh, S. K., Manea, V. C., and Gurnis, M. (2008), Horizontal subduction and truncation of the Cocos plate beneath central Mexico, Geophys Res. Lett., 35. doi: 10.1029/2008GL035127
  32. Persaud, P., Pérez-Campos, X., and Clayton, R. W. (2007), Crustal thickness variations in the margins of the Gulf of California from receiver functions, Geophys. J. Int., 170, 687–699.Google Scholar
  33. Ponce, L., Gaulon, R., Suárez, G., and Lomas, E. (1992), Geometry and state of stress of the downgoing Cocos plate in the Isthmus of Tehuantepec, Mexico, Geophys. Res. Lett., 19, 773–776.Google Scholar
  34. Preston, L. A., Creager, K. C., Crosson, R. S., Brocher, T. M., and Trehu, A. M. (2003), Intraslab earthquakes: Dehydration of the Cascadia slab, Science, 302, 1197–1200.Google Scholar
  35. Suárez, G., Monfret, T., Wittlinger, G., and David, C. (1990), Geometry of subduction and depth of the seismogenic zone in the Guerrero gap, Mexico, Nature, 345, 336–338.Google Scholar
  36. Tonegawa, T., Hirahara, K., and Shibutani, T. (2005), Detailed structure of the upper mantle discontinuities around the Japan Subduction zone imaged by receiver function analyses, Earth Planets Space, 57, 5–14.Google Scholar
  37. Turcotte, D. L., and Schubert, G., Geodynamics, (Cambridge Univ. Press, 2001).Google Scholar
  38. Urrutia-Fucugauchi, J., and Flores-Ruiz, J. (1996), Bouguer gravity anomalies and regional crustal structure in Central Mexico, Int. Geol. Rev., 38(2), 176–194.Google Scholar
  39. Valdés, C. M., Mooney, W. D., Singh, S. K., Meyer, R. P., Lomnitz, C., Luetgert, J. H., Helsley, C. E., Lewis, B. T. R., and Mena, M. (1986), Crustal structure of Oaxaca, Mexico, from seismic refraction measurements, Bull. Seism. Soc. Am., 76(2), 574–563.Google Scholar
  40. Wessel, P., and Smith, W. H. F. (1991), Free software helps map and display data, EOS, Trans. Am. Geophys. Un., 72, 445–446.Google Scholar
  41. Yamauchi, M., Hirahara K., and Shibutani, T. (2003), High resolution receiver function imaging of the seismic velocity discontinuities in the crust and uppermost mantle beneath southwest Japan, Earth Planets Space, 55, 59–64.Google Scholar
  42. Zamora-Camacho A., Espíndola V. H., Pacheco J. F., Espíndola J. M., and Godínez M. L. (2010), Crustal thickness at the Tuxtla Volcanic Field, (Veracruz, Mexico) from receiver functions. Phys. Earth Planetary Int, 182, 1–9.Google Scholar
  43. Zhu, L., and Kanamori, H. (2000), Moho depth variations in southern California from Teleseismic Receiver Functions. J. Geophys. Res., 105(B2), 2969–2980.Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Facultad de IngenieríaUniversidad Nacional Autónoma de MéxicoMexico, D.F.Mexico
  2. 2.Departamento de Sismología, Instituto de GeofísicaUniversidad Nacional Autónoma de México, Circuito de la InvestigaciónMexico, D.F.Mexico
  3. 3.Scripps Institution of OceanographyUniversity of California San DiegoSan DiegoUSA

Personalised recommendations