Skip to main content
Log in

A New Technique to Synthesize Seismography with More Flexibility: the Legendre Spectral Element Method with Overlapped Elements

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The classic spectral element method (SEM) is important for seismographical simulation. However, waves subjected to irregular interfaces or surfaces are difficult to simulate accurately using SEM with quadrangular/hexahedral elements. In this paper we propose a new technique to solve this problem. The technique reconstructs some new elements near the surface/interface to substitute for any element crossing the interface, thus making the boundary of some new elements an accurate fit to the interface/surface. Numerical comparisons with the classic SEM show that the technique has improved flexibility when dealing with interface problems without losing accuracy and efficiency. The technique also enables us to vary the size and shape of an element smoothly as the velocity in a medium varies so that this removes the inaccuracy resulting from the high local variation of the grid in the classic SEM. Therefore, the technique widens the application of the classic SEM in seismographic simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bao, H., Bielak, J., Ghattas, O., Kallivokas, L. F., O’Hallaron, D. R., Shewchuk, J. R., and Xu, J. (1998), Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers, Comput. Methods Appl. Mech. Eng. 152, 85–102.

  • Bard, P. Y. and Bouchon, M. (1980), The seismic response of sediment-filled valleys: 1. The case of incident SH waves, Bull. Seismol. Soc. Am. 70, 1263–1286.

  • Bard, P. Y., Bouchon, M. (1985), The two-dimensional resonance of sedimentary valley, Bull. Seismol. Soc. Am. 75, 519–541.

  • Bouchon, M. (1973), Effect of topography on surface motion, Bull. Seismol. Soc. Am. 63, 615–632.

  • Bouchon, M. (1976), Teleseismic body wave radiation from a seismic source in layered medium, Geophys. J. R. Astron. Soc. 47, 515–530.

  • Chen, X. (1990), Seismograms synthesis for multi-layer media with irregular interfaces by global generalized reflection/transmission matrices method. Part I. Theory of 2-D SH case. Bull. Seismol. Soc. Am. 80, 1696–1724.

  • Furumura, T., Kennett, B. L. N., and Furumura, M. (1998), Seismic wavefield calculation for laterally heterogeneous whole earth models using the pseudospectral method, Geophys. J. Int. 135, 845–860.

  • Graves, R. W. (1996), Simulating seismic wave propagation in 3D elastic media using staggered-grid finite-differences, Bull. Seismol. Soc. Am. 86, 1091–1107.

  • Horike, M., Uebayashi, H., and Takeuchi, Y. (1990), Seismic response in three-dimensional sedimentary basin due to plane S-wave incidence. J. Phys. Earth 38, 261–284.

  • Kohketsu, K. (1987), 2-D reflectivity method and synthetic seismogram for irregularly layered structures-I. SH wave generation, Geophys. J. R. Astron. Soc. 89, 821–838.

  • Kohketsu, K., Kennett, B. L., and Takenaka, H. (1991), 2-D reflectivity method and synthetic seismograms for irregularly layered structures-П. Invariant embedding approach. Geophys. J. Int. 105, 119–130.

  • Kohketsu, K., Fujiwara, H., and Ikegamy, Y. (2004), Finite-element simulation of seismic ground motion with a voxel mesh. Pure Appl. Geophyis. 161, 2183–2198.

  • Komatitsch, D. and Vilotte, J. P. (1998), The spectral element method. An efficient tool to simulation the seismic response of 2D and 3D geological structure. Bull. Seismol. Soc. Am. 88, 368–392.

  • Komatitsch, D. and Tromp, J. (1999), Introduction to the spectral seismic wave propagation, Geophys. J. Int. 139, 806–822.

  • Komatitsch, D. (2000), Simulation of anisotropic wave propagation based upon a spectral element method, Geophysics 65(4), 1251–1260.

  • Komatitsch, D., Martin, R., Tromp, J., Taylor, M. A., and Wingate, B. A. (2001), Wave propagation in 2-D elastic media using a spectral element method with triangles and quadrangles, J. Comput. Acoust. 9, 703–718.

  • Komatitsch, D., Liu, Q., Tromp, J., Suss, P., Stidham, C., and Shaw, J. H. (2004), Simulations of ground motion in the Los Angeles Basin based upon the spectral-element method, Bull. Seismol. Soc. Am. 94, 187–206.

  • Komatitsch, D. and Tromp, J. (2002), Spectral-element simulations of global seismic wave propagation—I. Validation, Geophys. J. Int. 149(2), 390–412.

  • Lee, V. W. and Karl, J. (1992), Diffraction of SV waves by underground circular cylindrical cavities, Soil Dyn. Earthq. Eng. 11, 445–456.

  • Lee, V. W. and Karl, J. (1993), On deformation near a circular underground cavity subjected to incident plane P waves, Eur. J. Earthq. Eng., 7(1), 29–36.

  • Levander, A. R.,(1988), Fourth-order finite-difference P-SV seismograms, Geophysics 53, 1425–1436.

  • Liang, J. W., Yan, L. J., and Lee, V. W. (2001) Scattering of plane P waves by circular-arc layered alluvial valleys: an analytical solution, Acta Seim. Sin. 14(2), 176–195.

  • Mercerat, E. D., Vilotte, J. P., and Sanchez-Sesma, F. J. F. J. (2006), Triangular spectral element simulation of two-dimensional elastic wave propagation using unstructured triangular grids, Geophys. J. Int. 166, 679–698.

  • Moczo, P., Kristek, J., and Bystricky, E. (2001), Efficiency and optimization of the 3-D finite-difference modeling of seismic ground motion, J. Comput. Acoust. 9, 593–609.

  • Moeen-Vaziri, N. and Trifunac, M. D. (1988), Scattering and diffraction of plane P and SV-waves by two-dimensional inhomogeneities, Soil Dyn. Earthq. Eng. 7, 189–200.

  • Olsen, K. B., Archuleta, R. J., and Matarese, J. R. (1995), 3-Dimensional simulation of a magnitude-7.75 earthquake on the San-Andreas fault, Sciences 270, 1628–1632.

  • Olsen, K., Madariaga, R., and Archuleta, R. J. (1997), Three dimensional dynamic simulations of the 1992 Landers earthquake, Science 278, 834–838.

  • Olsen, K. B. (2000), Site amplification in the Los Angeles Basin from three-dimensional modeling of ground motion, Bull. Seismol. Soc. Am. 90, 77–94.

  • Petera, A. T. (1984), A spectral element method for fluid dynamics: laminar flow in a channel expansion, J. Comput. Phys. 54, 468–488.

  • Priolo, E., Carcione, J., and Seriani, G. (1994), Numerical simulation of interface waves by high-order spectral modeling techniques, J. Acoust. Soc. Am. 95(2), 681–693.

  • Sanchez-Sesma, F. J. and Campillo, M. (1991), Diffraction of P, SV, and Rayleigh waves by topographic features: a boundary integral formulation, Bull. Seismol. Soc. Am. 81, 2234–2253.

  • Sanchez-Sesma, F. J. and Campillo, M. (1993), Topography effects for incident P, SV and Rayleigh waves, Tectonophysics 218, 113–125.

  • Sanchez-Sesma, F. J. and Luzon, F. (1995), Seismic response of three dimensional alluvial valleys for incident P, S and Rayleigh waves, Bull. Seismol. Soc. Am. 85, 269–284.

  • Seriani, G. (1998), 3-D large-scale wave propagation modeling by spectral element method on Cray T3E multiprocessor, Comput. Methods Appl. Mech. Eng. 164, 235–247.

  • Smith, W. D. (1975), The application of finite element analysis to body wave propagation problem, Geophys. J. R. Astron. Soc. 42, 747–768.

  • Takenaka, H., Ohori, M., Koketu, K., and Kennett, B. L. (1996), An efficient approach to the seismogram synthesis for a basin structure using propagation invariants, Bull. Seismol. Soc. Am. 86, 379–388.

  • Trifunac, M. D. (1971), Surface motion of a semi-cylindrical alluvial valley for incident plane SH wave, Bull. Seismol. Soc. Am. 61, 1755–1770.

  • Trifunac, M. D. (1973), Scattering of plane SH waves by a semi-cylindrical canyon, Earthq. Eng. Struct. Dyn. 1, 267–281.

  • Uebayashi, H., Horike, M., and Takeuchi, Y. (1992), Seismic motion in a three-dimensional arbitrarily-shaped sedimentary basin, due to a rectangular dislocation source, J. Phys. Earth 40, 223–240.

  • Wang, Y. B., Takenaka, H., and Furumura, T. (2001), Modeling seismic wave propagation in a two-dimensional cylindrical whole-earth model using pseudo-spectral method, Geophys. J. Int. 145, 689–708.

  • Wong, H. L. and Jennings, P. C. (1975), Effect of canyon topographies on strong ground motion, Bull. Seismol. Soc. Am. 65, 1239–1257.

  • Zhou, H. and Chen, X. F. (2006), A new approach to simulate scattering of SH waves by an irregular topography, Geophys. J. Int. 164(2), 449–459.

  • Zhou, H. and Chen, X. F. (2008), The localized boundary integral equation–discrete wavenumber method for simulating P-SV wave scattering by an irregular topography. Bull. Seismol. Soc. Am. 98(1), 265–279.

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (grant nos. 40874027, 90715020 and 90915012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, H., Chen, X. A New Technique to Synthesize Seismography with More Flexibility: the Legendre Spectral Element Method with Overlapped Elements. Pure Appl. Geophys. 167, 1365–1376 (2010). https://doi.org/10.1007/s00024-010-0106-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-010-0106-0

Keywords

Navigation