Skip to main content
Log in

A Hybrid Monte Carlo Method Based Artificial Neural Networks Approach for Rock Boundaries Identification: A Case Study from the KTB Bore Hole

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Identification of rock boundaries and structural features from well log response is a fundamental problem in geological field studies. However, in a complex geologic situation, such as in the presence of crystalline rocks where metamorphisms lead to facies changes, it is not easy to discern accurate information from well log data using conventional artificial neural network (ANN) methods. Moreover inferences drawn by such methods are also found to be ambiguous because of the strong overlapping of well log signals, which are generally tainted with deceptive noise. Here, we have developed an alternative ANN approach based on Bayesian statistics using the concept of Hybrid Monte Carlo (HMC)/Markov Chain Monte Carlo (MCMC) inversion scheme for modeling the German Continental Deep Drilling Program (KTB) well log data. MCMC algorithm draws an independent and identically distributed (i.i.d) sample by Markov Chain simulation technique from posterior probability distribution using the principle of statistical mechanics in Hamiltonian dynamics. In this algorithm, each trajectory is updated by approximating the Hamiltonian differential equations through a leapfrog discrimination scheme. We examined the stability and efficiency of the HMC-based approach on “noisy” data assorted with different levels of colored noise. We also perform uncertainty analysis by estimating standard deviation (STD) error map of a posteriori covariance matrix at the network output of three types of lithofacies over the entire length of the litho section of KTB. Our analyses demonstrate that the HMC-based approach renders robust means for classification of complex lithofacies successions from the KTB borehole noisy signals, and hence may provide a useful guide for understanding the crustal inhomogeneity and structural discontinuity in many other tectonically critical and complex regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saumen Maiti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maiti, S., Tiwari, R.K. A Hybrid Monte Carlo Method Based Artificial Neural Networks Approach for Rock Boundaries Identification: A Case Study from the KTB Bore Hole. Pure Appl. Geophys. 166, 2059–2090 (2009). https://doi.org/10.1007/s00024-009-0533-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-009-0533-y

Keywords

Navigation