The Effects of Solar Eclipse of August 1, 2008 on Earth’s Atmospheric Parameters

Abstract

Several experiments were undertaken at Kolkata (latitude: 22°34′N, longitude: 88°30′E) on the solar eclipse day of August 1, 2008 to observe the effects of the solar eclipse on Fair Weather Field (FWF) and VLF amplitude and phase. The experimental results presented here show significant deviations of the observed parameters from their normal values, as they are determined by the average of the records obtained on 5 days adjacent to the day of the solar eclipse.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Bering, E. A. III, Few, A. A., and Benbrook, J. R. (1998), The global electric circuit, Phys. Today 51, 24–30.

  2. Clilverd, M. A., Rodger, C. J., Thomson, N. R., Lichtenberger, J., Steinbach, P., Carinon, P., and Angling, M. J. (2001), Total solar eclipse effect on VLF signals: Observations and Modelling, Radio Sci. 36, 773–788.

  3. Crary, J. H. and Schneible, D. E. (1965), Effect of the solar eclipse of 20 July 1963 on VLF signal propagating over short paths, Radio Sci. 69D, 947–957.

  4. Dhanorkar, S., Deshpande, C. G., and Kamra, A. K. (1989), Atmospheric electricity measurements at Pune during the solar eclipse of 18th March, 1988, J. Atmos. Sol.-Terr. Phys. 51, 1031–1034.

  5. Dolezalek, H. (1972), Effects of the 7 March 1970 Solar eclipse on atmospheric electricity, a contribution to the boundary layer discussion, Arch. Met. Geoph. Biokl. 21, 221–245.

  6. Hoy, R. D. (1969), The effect of a total solar eclipse on the phase of long path v.l.f. transmissions, J. Atmos. Sol.-Terr. Phys. 31, 1027–1028.

  7. Kamra, A. K, and Varshneya, N. C. (1967), The effect of total solar eclipse atmospheric potential gradients, J. Atmos. Terr. Phys. 29, 327–329.

  8. Kamra, A. K., Teotia, J. K. S., and Sathe, A. B. (1982), Measurements of electric field and vertical distribution of space charge close to the ground during the solar eclipse of February 16, 1980, J. Geophys. Res. 87, 2057–2060.

  9. Kaufmann, P. and Schaal, R. F. (1968), The effect of total solar eclipse on long path VLF transmission, J. Atmos. Sol.-Terr. Phys. 30, 469–471.

  10. Lele, P. D., Jani, K. G., and Patel, A. P. (1997), Field strength measurements A-3 method (Oblique incidence) at Ahmedabad during total solar eclipse October 1995, Kodaikanal Obs. Bull. 13, 213–216.

  11. Lynn, K. J. W. (1973), VLF mode conversion observed at mid-latitude, J. Atmos. Terr. Phys. 35, 439–445.

  12. Lynn, K. J. W. (1981), The total solar eclipse of 23 Ocober, 1976 observed at VLF, LF mode conversion observed at mid-latitude, J. Atmos. Terr. Phys. 43, 1309–1316.

  13. Mahra, H. S. (1976), Proceedings of National Seminar on Time and Frequency held at the National Physical Laboratory, New Delhi, 121.

  14. Mendes da Costa, A. J. W., Paes Lemesta, N. M., and Rizzo Piazza, L. (1995), Lower ionosphere effect observed during 30 June 1992 total solar eclipse, J. Atmos. Terr. Phys. 57, 13–17.

  15. Nickolaenko, A. P. (1997), Modern aspects of Schumann resonance studies, J. Atmos. Sol.-Terr. Phys. 59, 805–816.

  16. Pant, P. and Mahra, H. S. (1980), Phase variations of GBR 16 kHz VLF signals as received at Naini Tal, Indian J. Radio Space Phys. 9, 134–137.

  17. Pant, P. and Mahra, H. S. (1994), Effect of solar eclipses on VLF propagation, Indian J. Radio Space Phys. 23, 399–402.

  18. Reeve, C. D. and Rycroft, M. J. (1972), The eclipsed lower ionosphere as investigated by natural very low frequency radio signal, J. Atmos. Terr. Phys. 34, 667–672.

  19. Ricardo, E. S., Aracy, M. M., Mendes, A. M., Ananto Krishnan, S, and Kaufmann, P. (1970), VLF propagation effects produced by eclipse, Nature 226, 1127–1129.

  20. Rycroft, M. J. and Cho, M. (1998), Modelling electric and magnetic fields due to thunderclouds and lightning from cloud top to the ionosphere, J. Atmos. Sol.-Terr. Phys. 60, 889–893.

  21. Rycroft, M. J. and Price, C. (2000), The global atmospheric electric circuit, solar activity and climatic change, J. Atmos. Sol.-Terr. Phys. 62, 1563–1576.

  22. Sengupta, A., Goel, G. K., and Mathur, B. S. (1980), Effect of the 16 February 1980 solar eclipse on VLF propagation, J. Atmos. Phys. 42, 907–909.

  23. Thomson, N. R. (1993), Experimental daytime VLF ionospheric parameters, J. Atmos. Terr. Phys. 55, 173–184.

  24. Verronen, P. T., Ulich, E., Turunen, E., and Rodger, C. J. (2006), Sunset transition of negative charge in the D-region ionosphere during high ionization conditions, Ann. Geophysicae 24, 187–202.

  25. Williams, E. R. and Heckman, S. J. (1993), The local diurnal variation of cloud electrification and the global diurnal variation of negative charge on the earth, J. Geophys. Res. 98, 5221–5234.

  26. Wait, J. R. and Spices, K. P. (1964), Characteristics of the Earth-ionosphere waveguide for VLF radio waves, NBS Tech. Note U. S. 300.

Download references

Acknowledgment

This work is funded by Indian Space Research Organization (ISRO) through S K Mitra Centre for Research in Space Environment, University of Calcutta, Kolkata, India.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Syam Sundar De.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

De, S.S., De, B.K., Bandyopadhyay, B. et al. The Effects of Solar Eclipse of August 1, 2008 on Earth’s Atmospheric Parameters. Pure Appl. Geophys. 167, 1273–1279 (2010). https://doi.org/10.1007/s00024-009-0041-0

Download citation

Keywords

  • Solar eclipse
  • lower ionospheric modification
  • atmospheric electricity parameters
  • non-linear interaction