Pure and Applied Geophysics

, Volume 164, Issue 1, pp 53–74 | Cite as

Analysis of Shallow and Deep Earthquake Doublets in the Fiji-Tonga-Kermadec Region

  • Slawomir J. GibowiczEmail author
  • Stanislaw Lasocki


For the Fiji-Tonga-Kermadec area and for the period from January 1977 to July 2003, the Harvard CMT catalogue lists 1022 shallow, 410 intermediate and 633 deep earthquakes of moment magnitude from 4.9 to 8.0. The magnitude threshold, above which the catalogue is complete, is 5.3–5.4, and the number of earthquakes of magnitude above this value is 691 for shallow, 329 for intermediate and 476 for deep events, respectively. The proportion of earthquakes associated with doublets and multiplets against the total number of earthquakes is approximately the same in both data sets and therefore all earthquake pairs were considered regardless of their magnitude. We investigated all the pairs of earthquakes that occurred at a centroid distance of less than 40, 60 or 90 km from each other and within a time interval of 200, 300 or 450 days, depending on their magnitude. We found 208 pairs of shallow, 31 of intermediate and 92 of deep events. To ascertain whether these earthquakes in pairs are not connected by chance, the possibility of their occurrence in an uncorrelated Poissonian catalogue was considered. It was assumed that in such a catalogue the inter-event time is exponentially distributed, the earthquake magnitude follows the Gutenberg-Richter relation, and the distribution of centroid distances between the events in pairs is controlled by its non-parametric kernel estimate. The probability of the appearance of the observed proportion of doublets of shallow earthquakes in the Poissonian catalogue was found to be very low. The low probability of occurrence in a semi-random catalogue, created by randomising centroid locations in the actual data set, also indicates major importance of the distance criterion used for a doublet specification. In general, shallow earthquakes tend to form pairs at shorter distances and within shorter time intervals than deep earthquakes. Both the distance and the time intervals do not depend on the magnitude of involved events. The largest number of pairs of deep earthquakes is observed at a depth of about 600 km, and the proportion of deep events associated with doublets against the number of all events increases with depth. From comparison of the focal mechanism of earthquakes in pairs, measured by the 3-D rotation angle, it follows that deep earthquakes forming pairs have a more diverse focal mechanism than shallow events; the rotation angle for three quarters of shallow pairs and only for about one third of deep pairs is reasonably small. The azimuth between two events forming a doublet is in about 60–65% of cases close to the strike of one of nodal planes of the first or the second event.


Earthquake doublet seismic catalogue clustering test focal mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhäuser Verlag, Basel, 2007

Authors and Affiliations

  1. 1.Institute of GeophysicsPolish Academy of SciencesWarsawPoland
  2. 2.Department of Geophysics, Faculty of Geology, Geophysics and Environmental ProtectionAGH University of Science and TechnologyKrakowPoland

Personalised recommendations