Advertisement

pure and applied geophysics

, Volume 161, Issue 3, pp 541–563 | Cite as

Recent Tectonic Structures in a Transect of the Central Betic Cordillera

  • P. RuanoEmail author
  • J. Galindo-Zaldívar
  • A. Jabaloy
Article

Abstract

—The Betic Cordillera has undergone recent Alpine deformations related to the Eurasian-African plate interaction boundary. Most of the present-day relief has been built up since Tortonian times, and is related to the development of folds and faults that are overprinted on older deformations, and some of the faults may be considered as out-of-sequence. The combination of geophysical and geological data makes it possible to determine the main features of the recent tectonic structures, or those recently active, in its central transect. The main fault is a crustal detachment that separates a footwall constituted by the Iberian Massif and a hanging wall formed by the rocks of the Betic Cordillera. While the footwall is practically undeformed, the hanging wall has been folded and faulted. The folds are mainly E-W to NE-SW and have larger sizes and higher related relieves towards the South. The reverse faults are mainly concentrated in the northern mountain front. However, normal faults affect the southern part of the Cordillera and are associated with the development of large asymmetrical basins such as the Granada Depression. In this setting, the slip along the crustal detachment is variable and should increase southwards. The model of the recent tectonics in the central transect of the Cordillera is compatible with the presence of an active subduction in the Alboran Sea, and contrasts notably with the setting of the eastern Betic Cordillera, mainly deformed by transcurrent faults.

Key words:

Betic Cordillera recent tectonics crustal detachment uplift normal faulting large folds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhäuser Verlag, Basel, 2004

Authors and Affiliations

  1. 1.Departamento de GeodinámicaUniversidad de GranadaGranadaSpain

Personalised recommendations