Skip to main content
Log in

On Unitarity of the Scattering Operator in Non-Hermitian Quantum Mechanics

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We consider the Schrödinger operator with regular short range complex-valued potential in dimension \(d\ge 1\). We show that, for \(d\ge 2\), the unitarity of scattering operator for this Hamiltonian at high energies implies the reality of the potential (that is Hermiticity of Hamiltonian). In contrast, for \(d=1\), we present complex-valued exponentially localized soliton potentials with unitary scattering operator for all positive energies and with unbroken PT symmetry. We also present examples of complex-valued regular short range potentials with real spectrum for \(d=3\). Some directions for further research are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ai, W.-Y., Bender, C.M., Sarkar, S.: \({\cal{P} T}\)-symmetric \(-g \varphi ^4\) theory. Phys. Rev. D 106, 125016 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  2. Barton, G.: Introduction to Advanced Field Theory, Chap. 12. Wiley, New York (1963)

    Google Scholar 

  3. Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bender, C.M., Brody, D.C., Jones, H.F.: Extension of \({\cal{P} T}\)-symmetric quantum mechanics to quantum field theory with cubic interaction. Phys. Rev. D 70, 025001 (2004)

    Article  ADS  Google Scholar 

  5. Cannata, F., Dedonder, J.-P., Ventura, A.: Scattering in \({\cal{P} T}\)-symmetric quantum mechanics. Ann. Phys. 322, 397–444 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  6. Deift, P., Trubowitz, E.: Inverse scattering on the line. Commun. Pure Appl. Math. 32, 121–251 (1979)

    Article  MathSciNet  Google Scholar 

  7. Dorey, P., Dunning, C., Tateo, R.: Spectral equivalences, Bethe Ansatz equations, and reality properties in \({\cal{P} T}\)-symmetric quantum mechanics. J. Phys. A 34(28), 5679–5704 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  8. Enss, V., Weder, R.: The geometrical approach to multidimensional inverse scattering. J. Math. Phys. 36, 3902–3921 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  9. Eremenko, A., Gabrielov, A.: PT-symmetric eigenvalues for homogeneous potentials. J. Math. Phys. 59, 053503 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. Eskin, G., Ralston, J.: The inverse back-scattering problem in three dimensions. Commun. Math. Phys. 124, 169–215 (1989)

    Article  ADS  Google Scholar 

  11. Eskin, G., Ralston, J.: Inverse back-scattering in two dimensions. Commun. Math. Phys. 138, 451–486 (1991)

    Article  ADS  Google Scholar 

  12. Faddeev, L.D.: Uniqueness of the solution of the inverse scattering problem. Vest. Leningr. Univ. 7, 126–130 (1956). (in Russian)

    MathSciNet  Google Scholar 

  13. Faddeev, L.D.: Mathematical aspects of the three-body problem in the quantum scattering theory. Trudy MIAN 69 (1963) (in Russian)

  14. Faddeev, L.D.: Inverse problem of quantum scattering theory. II. J. Sov. Math. 5, 334–396 (1976)

    Article  Google Scholar 

  15. Faddeev, L.D., Merkuriev, S.P.: Quantum Scattering Theory for Multi-particle Systems, Nauka, Moscow, 1985 (in Russian); English transl: Math. Phys. Appl. Math. 11 (1993), Kluwer Academic Publishers Group, Dordrecht

  16. Henkin, G.M., Novikov, R.G.: The \(\bar{\partial }\)-equation in the multidimensional inverse scattering problem. Russ. Math. Surv. 42(3), 109–180 (1987)

    Article  MathSciNet  Google Scholar 

  17. Marchenko, V.A.: Sturm–Liouville Operators and Their Applications. Naukova Dumka, Kiev (1977). (in Russian)

    Google Scholar 

  18. Novikov, R.G.: The inverse scattering problem at fixed energy for Schrödinger equation with an exponentially decreasing potential. Commun. Math. Phys. 161, 569–595 (1994)

    Article  ADS  Google Scholar 

  19. Novikov, R.G.: On inverse scattering for the N-body Schrödinger equation. J. Funct. Anal. 159(2), 492–536 (1998)

    Article  MathSciNet  Google Scholar 

  20. Novikov, R.G.: Approximate inverse quantum scattering at fixed energy in dimension 2. Proc. Steklov Inst. Math. 225, 285–302 (1999)

    Google Scholar 

  21. Novikov, S.P., Manakov, S.V., Pitaevskii, L.V., Zakharov, V.E.: Theory of Solitons: The Inverse Scattering Method. Springer, Berlin (1984)

    Google Scholar 

  22. Sang, M.H., Li, C.C., Yu, Z.X., Wang, Y.S.: Reflectionless potentials via complex potentials. Int. J. Theor. Phys. 50, 3459–3466 (2011)

    Article  Google Scholar 

  23. Sun, Y.Y., Yuan, J.M., Zhang, D.J.: Solutions to the complex Korteweg–de Vries equation: blow-up solutions and non-singular solutions. Commun. Theor. Phys. 61, 61415 (2014)

    Article  MathSciNet  Google Scholar 

  24. Taimanov, I.A., Tsarev, S.P.: On the Moutard transformation and its applications to spectral theory and soliton equations. J. Math. Sci. 170(3), 371–387 (2010)

    Article  MathSciNet  Google Scholar 

  25. Wang, X.P.: On the uniqueness of inverse scattering for N-body systems. Inverse Problems 10, 765–784 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  26. Wen, Z., Bender, C.M.: PT-symmetric potentials having continuous spectra. J. Phys. A Math. Theor. 53(37), 375302 (2020)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of I.A. Taimanov was performed according to the Government research assignment for IM SB RAS, Project FWNF-2022-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Novikov.

Additional information

Communicated by Jan Derezinski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, R.G., Taimanov, I.A. On Unitarity of the Scattering Operator in Non-Hermitian Quantum Mechanics. Ann. Henri Poincaré 25, 3899–3909 (2024). https://doi.org/10.1007/s00023-024-01414-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-024-01414-5

Mathematics Subject Classification

Navigation