Skip to main content
Log in

Positive Maps and Entanglement in Real Hilbert Spaces

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

The theory of positive maps plays a central role in operator algebras and functional analysis and has countless applications in quantum information science. The theory was originally developed for operators acting on complex Hilbert spaces and less is known about its variant on real Hilbert spaces. In this article, we study positive maps acting on a full matrix algebra over the reals, pointing out a number of fundamental differences with the complex case and discussing their implications in quantum information. We provide a necessary and sufficient condition for a real map to admit a positive complexification and connect the existence of positive maps with non-positive complexification with the existence of mixed states that are entangled in real Hilbert space quantum mechanics, but separable in the complex version, providing explicit examples both for the maps and for the states. Finally, we discuss entanglement breaking and PPT maps, and we show that a straightforward real version of the PPT-squared conjecture is false even in dimension 2. Nevertheless, we show that the original PPT-squared conjecture implies a different conjecture for real maps, in which the PPT property is replaced by a stronger property of invariance under partial transposition (IPT). When the IPT property is assumed, we prove an asymptotic version of the conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleksandrova, A., Borish, V., Wootters, W.K.: Real-vector-space quantum theory with a universal quantum bit. Phys. Rev. A 87, 052106 (2013)

    ADS  Google Scholar 

  2. Araki, H.: On a characterization of the state space of quantum mechanics. Commun. Math. Phys. 75(1), 1–24 (1980)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Audenaert, K., de Moor, B.: Optimizing completely positive maps using semidefinite programming. Phys. Rev. A 65, 030302 (2002)

    ADS  Google Scholar 

  4. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Phys. Phys. Fiz. 1, 195 (1964)

    MathSciNet  Google Scholar 

  5. Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82(26), 5385 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Blecher, D.P., Tepsan, W.: Real operator algebras and real positive maps. Integral Equ. Oper. Theory 93, 1–33 (2021)

    MathSciNet  MATH  Google Scholar 

  7. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    ADS  Google Scholar 

  8. Caves, C.M., Fuchs, C.A., Rungta, P.: Entanglement of formation of an arbitrary state of two rebits. Found. Phys. Lett. 14, 199–212 (2001)

    MathSciNet  Google Scholar 

  9. Chen, L., Đoković, D.: Length filtration of the separable states. Proc. A. 472, 20160350, 13 (2016)

  10. Chen, L., Yang, Y., Tang, W.: The positive partial transpose conjecture for n = 3. Phys. Rev. A 99, 012337 (2019)

    ADS  Google Scholar 

  11. Chiribella, G., D’Ariano, G.M., Perinotti, P.: Probabilistic theories with purification. Phys. Rev. A 81, 062348 (2010)

    ADS  Google Scholar 

  12. Chiribella, G.: Process tomography in general physical theories. Symmetry 13, 1985 (2021)

    ADS  Google Scholar 

  13. Chiribella, G., D’Ariano, G.M., Perinotti, P.: Informational derivation of quantum theory. Phys. Rev. A 84, 012311 (2011)

    ADS  Google Scholar 

  14. Chiribella, G., Davidson, K.R., Paulsen, V.I., Rahaman, M.: Counterexamples to the extendibility of positive unital norm-one maps. Linear Algebra Appl., posted on 2023, to appear. https://doi.org/10.1016/j.laa.2023.01.003, available at arXiv:2204.08819

  15. Chiribella, G., Yang, Y., Yao, A.C.-C.: Quantum replication at the Heisenberg limit. Nat. Commun. 4, 2915 (2013)

    ADS  Google Scholar 

  16. Choi, M.D.: Positive linear maps on \(C^{*}\)-algebras. Can. J. Math. 24, 520–529 (1972)

    MATH  Google Scholar 

  17. Choi, M.D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975)

    MathSciNet  MATH  Google Scholar 

  18. Choi, M.D.: Positive semidefinite biquadratic forms. Linear Algebra Appl. 12(2), 95–100 (1975)

    MathSciNet  MATH  Google Scholar 

  19. Christandl, M., Müller-Hermes, A., Wolf, M.: When do composed maps become entanglement breaking. Ann. Henri Poincaré 20, 2295–2322 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Chruściński, D., Kossakowski, A.: Spectral conditions for positive maps. Commun. Math. Phys. 290, 1051–1064 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Clarisse, L.: Characterization of distillability of entanglement in terms of positive maps. Phys. Rev. A 71, 032332 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Dakić, B., Brukner, Č: Quantum theory and beyond: Is entanglement special? In: Deep Beauty, pp. 365–391 (2011)

  23. de Pillis, J.: Linear transformations which preserve Hermitian and positive semidefinite operators. Pac. J. Math. 23, 129–137 (1967)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Eric, P., Cambyse, Rouzé Hanson., França, Stilck: Eventually entanglement breaking Markovian dynamics: structure and characteristic times. Ann. Henri Poincaré 21(5), 1517–1571 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Gurvits, L., Barnum, H.: Largest separable balls around the maximally mixed bipartite quantum state. Phys. Rev. A 66, 062311 (2002)

    ADS  Google Scholar 

  26. Hardy, L.: Quantum theory from five reasonable axioms (2001). Available at arXiv:quant-ph/0101012

  27. Hardy, L.: Reformulating and reconstructing quantum theory (2011). Available at arXiv:1104.2066

  28. Hardy, L., Wootters, W.K.: Limited holism and real-vector-space quantum theory. Found. Phys. 42, 454–473 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Hildebrand, R.: Semidefinite descriptions of low-dimensional separable matrix cones. Linear Algebra Appl. 429(4), 901–932 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333–339 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Horodecki, M., Shor, P., Ruskai, M.B.: Entanglement breaking channels. Rev. Math. Phys. 15, 629–641 (2003)

    MathSciNet  MATH  Google Scholar 

  34. Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 3, 275–278 (1972)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Johnston, N., Kribs, D.W., Paulsen, V.I., Pereira, R.: Minimal and maximal operator spaces and operator systems in entanglement theory. J. Funct. Anal. 260, 2407–2423 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Kennedy, M., Manor, N.A., Paulsen, V.I.: Composition of PPT maps. Quantum Inf. Comput. 18, 472–480 (2018)

    MathSciNet  Google Scholar 

  37. Klep, I., McCullough, S., Sivic, K., Zalar, A.: There are many more positive maps than completely positive maps. Int. Math. Res. Not. IMRN 11, 3313–3375 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Masanes, L., Müller, M.P.: A derivation of quantum theory from physical requirements. New J. Phys. 13, 063001 (2011)

    ADS  MATH  Google Scholar 

  39. Masanes, L., Müller, M.P., Augusiak, R., Pérez-García, D.: Existence of an information unit as a postulate of quantum theory. Proc. Natl. Acad. Sci. U.S.A. 110, 16373–16377 (2013)

    ADS  Google Scholar 

  40. Navascués, M., Vértesi, T.: Activation of nonlocal quantum resources. Phys. Rev. Lett. 106, 060403 (2011)

    ADS  Google Scholar 

  41. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  42. Palazuelos, C.: Superactivation of quantum nonlocality. Phys. Rev Ŀett. 109, 190401 (2012)

    ADS  Google Scholar 

  43. Paulsen, V.I.: Completely Bounded Maps and Operator Algebras. Cambridge Studies in Advanced Mathematics, vol. 78. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  44. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Popescu, S.: Bell’s inequalities and density matrices: revealing “hidden’’ nonlocality. Phys. Rev. Lett. 74, 2619 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Rahaman, M., Jaques, S., Paulsen, V.I.: Eventually entanglement breaking maps. J. Math. Phys. 062201, 11 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Ranade, K., Ali, M.: The Jamio lkowski isomorphism and a simplified proof for the correspondence between vectors having Schmidt number k and k-positive maps. Open. Syst. Inf. Dyn. 14, 371–378 (2007)

    MathSciNet  MATH  Google Scholar 

  48. Renou, M., et al.: Quantum theory based on real numbers can be experimentally falsified. Nature 600, 625–629 (2021)

    ADS  Google Scholar 

  49. Rosenberg, J.: Structure and applications of real \(C^{*}\)-algebras. Oper. Algebras Appl. 671, 235–258 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Ruan, Z.-J.: On real operator spaces. Acta Math. Sin. Engl. Ser. 19, 485–496 (2003)

    MathSciNet  MATH  Google Scholar 

  51. Ruan, Z.-J.: Complexifications of real operator spaces. Ill. J. Math. 47, 1047–1062 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Ruskai, M.B., Junge, M., Kribs, D., Hayden, P., Winter, A.: Operator structures in quantum information theory. BIRS Report 12w5084, Banff International Research Station (2012)

  53. Sanpera, A., Bruß, D., Lewenstein, M.: Schmidt-number witnesses and bound entanglement. Phys. Rev. A 63, 050301 (2001)

    ADS  Google Scholar 

  54. Skowronek, Ł, Størmer, E., Życzkowski, Kl.: Cones of positive maps and their duality relations. J. Math. Phys. 50, 062106 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  55. Stormer, E.: Positive Linear Maps of Operator Algebras. Springer Monographs in Mathematics. Springer, Heidelberg (2013)

    Google Scholar 

  56. Stueckelberg, E.C.G.: Quantum theory in real Hilbert space. Helv. Phys. Acta 33(727), 458 (1960)

    MathSciNet  MATH  Google Scholar 

  57. Takasaki, T., Tomiyama, J.: On the geometry of positive maps in matrix algebras. Math. Z. 184, 101–108 (1983)

    MathSciNet  MATH  Google Scholar 

  58. Terhal, B.M.: Bell inequalities and the separability criterion. Phys. Lett. A 271, 319–326 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  59. Terhal, B.M., Horodecki, P.: Schmidt number for density matrices. Phys. Rev. A 61, 040301 (2000)

    ADS  MathSciNet  Google Scholar 

  60. Watrous, J.: The Theory of Quantum Information. Cambridge University Press, V (2018)

    MATH  Google Scholar 

  61. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    ADS  MATH  Google Scholar 

  62. Wootters, W.K.: Local accessibility of quantum states. Complex. Entropy Phys. Inf. 8, 39–46 (1990)

    Google Scholar 

  63. Wootters, W.K.: Entanglement sharing in real-vector-space quantum theory. Found. Phys. 42, 19–28 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  64. Wootters, W.K.: The rebit three-tangle and its relation to two-qubit entanglement. J. Phys. A 47, 424037 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  65. Wu, K.-D., Kondra, T.V., Rana, S., Scandolo, C.M., Xiang, G.-Y., Li, C.-F., Guo, G.-C., Streltsov, A.: Operational resource theory of imaginarity. Phys. Rev. Lett. 126, 090401 (2021)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

GC was supported by the Hong Kong Research Grant Council through Grant 17300920 and through the Senior Research Fellowship Scheme via SRFS2021-7S02, and by the Croucher foundation. KRD and VIP were partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). MR is supported by the European Research Council (ERC Grant Agreement No. 851716). The authors would like to thank the anonymous referees for many helpful suggestions in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mizanur Rahaman.

Additional information

Communicated by David Pérez-García.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiribella, G., Davidson, K.R., Paulsen, V.I. et al. Positive Maps and Entanglement in Real Hilbert Spaces. Ann. Henri Poincaré 24, 4139–4168 (2023). https://doi.org/10.1007/s00023-023-01325-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-023-01325-x

Navigation