Skip to main content
Log in

Quantum Graphs: Coulomb-Type Potentials and Exactly Solvable Models

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We study the Schrödinger operators on a non-compact star graph with the Coulomb-type potentials having singularities at the vertex. The convergence of regularized Hamiltonians \(H_\varepsilon \) with cutoff Coulomb potentials coupled with \((\alpha \delta +\beta \delta ')\)-like ones is investigated. The 1D Coulomb potential and the \(\delta '\)-potential are very sensitive to their regularization method. The conditions of the norm resolvent convergence of \(H_\varepsilon \) depending on the regularization are established. The limit Hamiltonians give the Schrödinger operators with the Coulomb-type potentials in a mathematically precise meaning, ensuring the correct choice of vertex conditions. We also describe all self-adjoint realizations of the formal Coulomb Hamiltonians on the star graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kuchment, P.: Graph models for waves in thin structures. Waves Random Media 12(4), R1 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Berkolaiko, G., Carlson, R., Fulling, S.A., Kuchment, P.: Quantum Graphs and their Applications. Contemp. Math., vol. 415. American Mathematical Soc, Providence (2006)

    MATH  Google Scholar 

  3. Exner, P., Keating, J.P., Kuchment, P., Teplyaev, A., Sunada, T. (eds.): Analysis on Graphs and Its Applications, vol. 77. American Mathematical Soc (2008)

    Google Scholar 

  4. Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs (No. 186). American Mathematical Soc (2013)

    MATH  Google Scholar 

  5. Molchanov, S., Vainberg, B.: Transition from a network of thin fibers to the quantum graph: an explicitly solvable model. Contemp. Math. 415, 227 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Molchanov, S., Vainberg, B.: Scattering solutions in networks of thin fibers: small diameter asymptotics. Commun. Math. Phys. 273(2), 533–559 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Grieser, D.: Spectra of graph neighborhoods and scattering. Proc. Lond. Math. Soc. 97(3), 718–752 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Albeverio, S., Cacciapuoti, C., Finco, D.: Coupling in the singular limit of thin quantum waveguides. J. Math. Phys. 48(3), 032103 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Cacciapuoti, C., Exner, P.: Nontrivial edge coupling from a Dirichlet network squeezing: the case of a bent waveguide. J. Phys. A Math. Theor. 40(26), F511 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Cacciapuoti, C., Finco, D.: Graph-like models for thin waveguides with Robin boundary conditions. Asymptot. Anal. 70(3–4), 199–230 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Post, O.: Spectral Analysis on Graph-Like Spaces, vol. 2039. Springer (2012)

    MATH  Google Scholar 

  12. Exner, P.: Weakly coupled states on branching graphs. Lett. Math. Phys. 38(3), 313–320 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Man’ko, S.S.: On \(\delta ^{\prime }\)-like potential scattering on star graphs. J. Phys. A Math. Theor. 43(44), 445304 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Exner, P., Manko, S.S.: Approximations of quantum-graph vertex couplings by singularly scaled potentials. J. Phys. A Math. Theor. 46(34), 345202 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Manko, S.S.: On \(\delta ^{\prime }\)-couplings at graph vertices. In: Mathematical Results in Quantum Mechanics: Proceedings of the QMath12 Conference, pp. 305–313 (2015)

  16. Exner, P.: Vertex couplings in quantum graphs: approximations by scaled Schrödinger operators. In: Proceedings of the ICM Satellite Conference Mathematics in Science and Technology (New Delhi 2010), pp. 71–92 (2011)

  17. Cheon, T., Shigehara, T.: Realizing discontinuous wave functions with renormalized short-range potentials. Phys. Lett. A 243(3), 111–116 (1998)

    ADS  Google Scholar 

  18. Cheon, T., Exner, P.: An approximation to \(\delta ^{\prime }\) couplings on graphs. J. Phys. A Math. Gen. 37(29), L329 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Cheon, T., Exner, P., Turek, O.: Approximation of a general singular vertex coupling in quantum graphs. Ann. Phys. 325(3), 548–578 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Golovaty, Y.: 1D Schrödinger operators with Coulomb-like potentials. J. Math. Phys. 60(8), 082105 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Klaus, M.: Some applications of the Birman–Schwinger principle. Helv. Phys. Acta 55(1), 49–68 (1982)

    MathSciNet  Google Scholar 

  22. Šeba, P.: Some remarks on the \(\delta ^{\prime }\)-interaction in one dimension. Rep. Math. Phys. 24(1), 111–120 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Christiansen, P.L., Arnbak, H.C., Zolotaryuk, A.V., Ermakov, V.N., Gaididei, Y.B.: On the existence of resonances in the transmission probability for interactions arising from derivatives of Dirac’s delta function. J. Phys. A Math. Gen. 36(27), 7589 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Zolotaryuk, A.V.: Two-parametric resonant tunneling across the \(\delta ^{\prime }(x)\) potential. Adv. Sci. Lett. 1(2), 187–191 (2008)

    Google Scholar 

  25. Zolotaryuk, A.V.: Point interactions of the dipole type defined through a three-parametric power regularization. J. Phys. A Math. Theor. 43(10), 105302 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Golovaty, Y.D., Hryniv, R.O.: On norm resolvent convergence of Schrödinger operators with \(\delta ^{\prime }(x)\)-like potentials. J. Phys. A Math. Theor. 43(15), 155204 (2010). (A Corrigendum: J. Phys. A: Math. Theor. (2011) 44:049802)

    ADS  MATH  Google Scholar 

  27. Golovaty, Y.D., Hryniv, R.O.: Norm resolvent convergence of singularly scaled Schrödinger operators and \(\delta ^{\prime }\)-potentials. Proc. R. Soc. Edinb. Sect. A Math. 143(4), 791–816 (2013)

    MATH  Google Scholar 

  28. Šeba, P.: Schrödinger particle on a half line. Lett. Math. Phys. 10(1), 21–27 (1985)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Golovaty, Y., Man’ko, S.: Schrödinger operator with \(\delta ^{\prime }\)-potential. Dopov. Nats. Akad. Nauk. Ukr. Mat. Pryr. Tekh. Nauky 5, 16–21 (2009)

    Google Scholar 

  30. Golovaty, Y., Man’ko, S.: Solvable models for the Schrödinger operators with \(\delta ^{\prime }\)-like potentials. Ukr. Math. Bull. 6(2), 169–203 (2009). arXiv:0909.1034v2 [math.SP]

    MathSciNet  Google Scholar 

  31. Loudon, R.: One-dimensional hydrogen atom. Am. J. Phys. 27(9), 649–655 (1959)

    ADS  Google Scholar 

  32. Loudon, R.: One-dimensional hydrogen atom. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2185), 20150534 (2016)

    ADS  Google Scholar 

  33. Fischer, W., Leschke, H., Müller, P.: The functional-analytic versus the functional-integral approach to quantum Hamiltonians. The one-dimensional hydrogen atom. J. Phys. A Math. Gen. 36(5), 2313–2323 (1995)

    MathSciNet  MATH  Google Scholar 

  34. Bodenstorfer, B., Dijksma, A., Langer, H.: Dissipative eigenvalue problems for a Sturm-Liouville operator with a singular potential. Proc. R. Soc. Edinb. Sect. A Math. 130(6), 1237–1257 (2000)

    MathSciNet  MATH  Google Scholar 

  35. De Oliveira, C.R., Verri, A.A.: Self-adjoint extensions of Coulomb systems in 1, 2 and 3 dimensions. Ann. Phys. 324(2), 251–266 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Gunson, J.: Perturbation theory for a Sturm–Liouville problem with an interior singularity. Proc. R. Soc. Lond. A Math. Phys. Sci. 414(1846), 255–269 (1987)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Haines, L.K., Roberts, D.H.: One-dimensional hydrogen atom. Am. J. Phys. 37(11), 1145–1154 (1969)

    ADS  Google Scholar 

  38. Andrews, M.: Singular potentials in one dimension. Am. J. Phys. 44(11), 1064–1066 (1976)

    ADS  MathSciNet  Google Scholar 

  39. Oseguera, U., De Llano, M.: Two singular potentials: the space-splitting effect. J. Math. Phys. 34(10), 4575–4589 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Mehta, C.H., Patil, S.H.: Bound states of the potential \(V(r)=-\frac{Z}{(r+\beta )}\). Phys. Rev. A 17(1), 43–46 (1978)

    ADS  Google Scholar 

  41. Gesztesy, F.: On the one-dimensional Coulomb Hamiltonian. J. Phys. A Math. Gen. 13(3), 867 (1980)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Klaus, M.: Removing cut-offs from one-dimensional Schrödinger operators. J. Phys. A Math. Gen. 13(9), L295 (1980)

    ADS  MathSciNet  MATH  Google Scholar 

  43. de Oliveira, C.R., Verri, A.A.: Mathematical predominance of Dirichlet condition for the one-dimensional Coulomb potential. J. Math. Phys. 53(5), 052104 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Golovaty, Y.: Schrödinger operators with \((\alpha \delta ^{\prime }+\beta \delta )\)-like potentials: norm resolvent convergence and solvable models. Methods Funct. Anal. Topol. 18(3), 243–255 (2012)

    MATH  Google Scholar 

  45. Moshinsky, M.: Penetrability of a one-dimensional Coulomb potential. J. Phys. A Math. Gen. 26, 2445–2450 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Newton, R.G.: Comment on ‘Penetrability of a one-dimensional Coulomb potential’ by M Moshinsky. J. Phys. A Math. Gen. 27(13), 4717–4718 (1994)

    ADS  MATH  Google Scholar 

  47. Moshinsky, M.: Response to “Comment on ‘Penetrability of a one-dimensional Coulomb potential’’’ by Roger G Newton. J. Phys. A Math. Gen. 27(13), 4719–4721 (1994)

    ADS  MATH  Google Scholar 

  48. Kurasov, P.: On the Coulomb potential in one dimension. J. Phys. A Math. Gen. 29(8), 1767–1771 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Fischer, W., Leschke, H., Muller, P.: Comment on ‘On the Coulomb potential in one dimension’ by P Kurasov. J. Phys. A Math. Gen. 30(15), 5579–5581 (1997)

    ADS  MATH  Google Scholar 

  50. Kurasov, P.: Response to “Comment on ‘On the Coulomb potential in one dimension’’’ by Fischer, Leschke and Muller. J. Phys. A Math. Gen. 30(15), 5583–5589 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  51. Calçada, M., Lunardi, J.T., Manzoni, L.A., Monteiro, W., Pereira, M.: A distributional approach for the one-dimensional hydrogen atom. Front. Phys. 7, 101 (2019)

    Google Scholar 

  52. Kostrykin, V., Schrader, R.: Kirchhoff’s rule for quantum wires. J. Phys. A Math. Gen. 32(4), 595 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  53. Kac, I., Pivovarchik, V.: On multiplicity of a quantum graph spectrum. J. Phys. A Math. Theor. 44(10), 105301 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy Golovaty.

Additional information

Communicated by Jan Derezinski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovaty, Y. Quantum Graphs: Coulomb-Type Potentials and Exactly Solvable Models. Ann. Henri Poincaré 24, 2557–2585 (2023). https://doi.org/10.1007/s00023-023-01270-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-023-01270-9

Keywords

Mathematics Subject Classification

Navigation