Skip to main content
Log in

Classification of the Blow-Up Behavior for a Semilinear Wave Equation with Nonconstant Degenerate Coefficients

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We consider a nonlinear wave equation with nonconstant coefficients. In particular, the coefficient in front of the second-order space derivative is degenerate. We give the blow-up behavior and the regularity of the blow-up set. Partial results are given at the origin, where the degeneracy occurs. Some nontrivial obstacles, due to the nonconstant speed of propagation, have to be surmounted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In particular, at some point we will integrate with respect to the weight \((1-r^2)^{\frac{2}{p-1}-\frac{d-1}{2} }r^{d-1}\) which is in \(L^1(0,1)\) if (1.3) and (1.5) hold.

References

  1. Alexakis, S., Shao, A.: On the profile of energy concentration at blow-up points for subconformal focusing nonlinear waves. Trans. Amer. Math. Soc. 369(8), 5525–5542 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antonini, C., Merle, F.: Optimal bounds on positive blow-up solutions for a semilinear wave equation. Int. Math. Res. Not. 21, 1141–1167 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Côte, R., Zaag, H.: Construction of a multisoliton blowup solution to the semilinear wave equation in one space dimension. Commun. Pure Appl. Math. 66(10), 1541–1581 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hamza, M.A., Zaag, H.: Lyapunov functional and blow-up results for a class of perturbations of semilinear wave equations in the critical case. J. Hyperbolic Differ. Equ. 9(2), 195–221 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hamza, M.A., Zaag, H.: A Lyapunov functional and blow-up results for a class of perturbed semilinear wave equations. Nonlinearity 25(9), 2759–2773 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Hamza, M.A., Zaag, H.: Blow-up behavior for the Klein-Gordon and other perturbed semilinear wave equations. Bull. Sci. Math. 137(8), 1087–1109 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hamza, M.A., Zaag, H.: Prescribing the center of mass of a multi-soliton solution for a perturbed semilinear wave equation. J. Differ. Equ. 267(6), 3524–3560 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Merle, F., Zaag, H.: Determination of the blow-up rate for the semilinear wave equation. Am. J. Math. 125(5), 1147–1164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Merle, F., Zaag, H.: On growth rate near the blowup surface for semilinear wave equations. Int. Math. Res. Not. 19, 1127–1155 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Merle, F., Zaag, H.: Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension. J. Funct. Anal. 253(1), 43–121 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Merle, F., Zaag, H.: Openness of the set of non-characteristic points and regularity of the blow-up curve for the 1 D semilinear wave equation. Commun. Math. Phys. 282(1), 55–86 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Merle, F., Zaag, H.: Blow-up behavior outside the origin for a semilinear wave equation in the radial case. Bull. Sci. Math. 135(4), 353–373 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Merle, F., Zaag, H.: Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension. Am. J. Math. 134(3), 581–648 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Merle, F., Zaag, H.: Isolatedness of characteristic points at blowup for a 1-dimensional semilinear wave equation. Duke Math. J. 161(15), 2837–2908 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Todorova, G., Radu, P., Yordanov, B.: Decay estimates for wave equations with variable coefficients. Trans. Am. Math. Soc. 362(5), 2279–2299 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Georgiev, V., Todorova, G.: Existence of a solution of the wave equation with nonlinear damping and source terms. J. Differ. Equ. 109(2), 295–308 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Mohamed Ali Hamza, for his helpful advices during the preparation of this paper, which greatly improved the presentation of the results. This material is based upon work supported by Tamkeen under the NYU Abu Dhabi Research Institute grant CG002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma Azaiez.

Additional information

Communicated by Nader Masmoudi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A \(L^2_{loc,u}\) for Radial Functions

A \(L^2_{loc,u}\) for Radial Functions

Note that we handle only \(L^2\)-type spaces, since the extension to \(H^1\)-type spaces is natural. Consider u a radial solution in \(L_{loc,u}^2\) in \({\mathbb {R}}^d\) and introduce \(\tilde{u}\) such that \(u(x)={{\tilde{u}}}(r)\) with \(r=|x|,\, \forall x\in {\mathbb {R}}^d\).

Let \(A=\displaystyle \sup \limits _{x_0\in {\mathbb {R}}^d} \int _{B(x_0,1)}|u(x)|^2 dx \) the square of the \(L_{loc,u}^2\) norm in \({\mathbb {R}}^d\) and \(B=\displaystyle \sup \limits _{r_0\ge 1}\frac{1}{r_0^{d-1}} \int _{r_0-1}^{r_0+1}|{{\tilde{u}}}(r)|^2 r^{d-1}dr .\) We also define for the crown \({\mathcal {C}}(r_0,1)\) by

$$\begin{aligned} \forall r_0\ge 1,\,{\mathcal {C}}(r_0,1)=\{ x\in {\mathbb {R}}^d, |\,\, r_0-1\le |x| < r_0+1\}. \end{aligned}$$

We aim at proving that the square root of B is an equivalent norm to the \(L_{loc,u}^2\) in the radial setting. More precisely, we have the following:

Lemma A.1

i):

\(\exists {{\bar{\alpha }}} (d)>0\) such that \(A\le {{\bar{\alpha }}} (d) B\).

ii):

\(\exists {{\bar{\beta }}} (d)>0\) such that \(B\le {{\bar{\beta }}} (d) A\).

Proof

i):

It is enough to show that for any \(x_0\in {\mathbb {R}}^d\),

$$\begin{aligned} \int _{B(0,2)}|u(x)|^2 dx \le {{\bar{\alpha }}} (d) B, \text{ for } \text{ some } {{\bar{\alpha }}} (d) >0 . \end{aligned}$$

Consider \(x_0\in {\mathbb {R}}^d\). If \(|x_0|<1\) and \(x\in B(x_0,1)\) then \(|x|<|x_0|+1<2\). Consequently,

$$\begin{aligned} \int _{B(x_0,1)}|u(x)|^2 dx\le \int _{B(0,2)}|u(x)|^2 dx= \omega _{d-1}\int _{0}^2 |{{\tilde{u}}}(r)|^2 r^{d-1}dr \le \omega _{d-1}B, \end{aligned}$$

where \(\omega _{d-1}\) is the volume of the sphere \(S^{d-1}\). Now, if \(|x_0|\ge 1\), then we have \( B(x_0,1) \subset {\mathcal {C}}(|x_0|,1) \). Furthermore, for geometric considerations, we know that there exists \(\alpha (d, |x_0|)>0\) such that the crown \({\mathcal {C}}(|x_0|,1)\) contains \(\alpha (d,|x_0|) r_0^{d-1}>0\) disjoint copies of \(B(x_0,1)\), with

$$\begin{aligned} \alpha (d, |x_0|)\equiv \alpha _0 (d) r_0^{d-1} \text{ as } r_0\rightarrow +\infty \text{ for } \text{ some } \alpha _0 (d)>0.\end{aligned}$$
(A.1)

If we denote by \(x_i \) for \(i\in \{0, \ldots ,\alpha -1\}\) the centers of those balls, then we have

$$\begin{aligned}{} & {} \int _{\bigcup \limits _{i=0}^{\alpha -1} B(x_i,1) }|u(x)|^2 dx\le \int _{{\mathcal {C}}(|x_0|,1)}u(r)^2 r^{d-1}dr \nonumber \\{} & {} = \omega _{d-1}\int _{r_0-1}^{r_0+1} |{{\tilde{u}}}(r)|^2 r^{d-1}dx \le \omega _{d-1} Br_0^{d-1}, \end{aligned}$$
(A.2)

on the one hand. On the other hand, since the difference between the two crown’s radii is 2 and the balls are of radius 1, it follows that

$$\begin{aligned} |x_i|=|x_0| ,\, \forall i\in \{0, \ldots \alpha -1\} \end{aligned}$$
(A.3)

Since u is radial and the balls \(B(x_i,1) \) are disjoint, using (A.3) we see that

$$\begin{aligned} \int _{\bigcup \limits _{i=0}^{\alpha -1} B(x_i,1) }|u(x)|^2 dx=\alpha (d,r_0)\int _{B(x_0,1) }|u(x)|^2 dx. \end{aligned}$$

Combining this with (A.2) and (A.1), we conclude the proof of item i).

ii):

Consider \(r_0\ge 1\). From geometric considerations, there exists \(\beta (d,r_0)>0\) such that the crown \({\mathcal {C}}(r_0,1)\) is contained in \(\beta (d, r_0)\) copies of B(0, 1), with

$$\begin{aligned} \beta (d, r_0)\equiv \beta _0 (d) r_0^{d-1} \text{ as } r_0\rightarrow +\infty \text{ for } \text{ some } \beta _0 (d)>0. \end{aligned}$$
(A.4)

Denoting by \(y_i \) for \(i\in \{0, \ldots ,\beta -1\}\) the centers of those balls, we have

$$\begin{aligned} \frac{1}{r_0^{d-1}} \int _{r_0-1}^{r_0+1}|{{\tilde{u}}}(r)|^2 r^{d-1}dr&=\frac{1}{\omega _{d-1}r_0^{d-1}} \int _{{\mathcal {C}}(|x_0|,1)}|u(x)|^2 dx\\&\le \frac{1}{\omega _{d-1}r_0^{d-1}} \sum _{i=0}^{\beta -1} \int _{B(y_i,1) }|u(x)|^2 dx \le \frac{\beta (d,r_0) }{\omega _{d-1}r_0^{d-1}} A. \end{aligned}$$

Using (A.4), we conclude the proof of item ii). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azaiez, A., Zaag, H. Classification of the Blow-Up Behavior for a Semilinear Wave Equation with Nonconstant Degenerate Coefficients. Ann. Henri Poincaré 24, 1417–1437 (2023). https://doi.org/10.1007/s00023-022-01247-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-022-01247-0

Navigation