Browdy, S., Galloway, G.: Topological censorship and the topology of black holes. J. Math. Phys. 36, 4952–61 (1995)
ADS
MathSciNet
Article
Google Scholar
Chruściel, P.: Geometry of Black Holes. Oxford University Press, Oxford (2020)
Book
Google Scholar
Chrúsciel, P., Galloway, G.: Roads to topological censorship. arXiv:1906.02151 (2019)
Chruúsciel, P., Galloway, G., Solis, D.: Topological censorship for Kaluza-Klein space-times. Annales Henri Poincare 10, 893–912 (2009)
ADS
MathSciNet
Article
Google Scholar
Chrúsciel, P., Mazzeo, R.: On “many black hole’’ vacuum spacetimes. Class. Quant. Gravity 20, 729 (2003)
ADS
MathSciNet
Article
Google Scholar
Friedman, J., Schleich, K., Witt, D.: Topological censorship. Phys. Rev. Lett. 71 (1993), erratum 75 (1995)
Galloway, G.: On the topology of the domain of outer communication. Class. Quant. Gravity 12, L99 (1995)
ADS
MathSciNet
Article
Google Scholar
Galloway, G.: A “finite infinity’’ version of the FSW topological censorship. Class. Quant. Gravity 13, 1471 (1996)
ADS
Article
Google Scholar
Galloway, G., Graf, G., Ling, E.: A conformal infinity approach to asymptotically \({\text{ AdS }}_2\times S^{n-1}\) spacetimes. Annales Henri Poincaré 21, 4073–4095 (2020)
ADS
MathSciNet
Article
Google Scholar
Galloway, G., Ling, E.: Topology and singularities in cosmological spacetimes obeying the null energy condition. Commun. Math. Phys. 360, 611–7 (2017)
ADS
MathSciNet
Article
Google Scholar
Galloway, G., Schleich, K., Witt, D., Woolgar, E.: Topological censorship and higher genus black holes. Phys. Rev. D 60, 104039 (1999)
ADS
MathSciNet
Article
Google Scholar
Galloway, G., Woolgar, E.: The cosmic censor forbids naked topology. Class. Quant. Gravity 14, L1 (1997)
ADS
MathSciNet
Article
Google Scholar
Hawking, S., Ellis, G.: The Large-Scale Structure of Space-Time. Cambridge University Press, London (1973)
Book
Google Scholar
Hatcher, A.: Notes on Basic \(3\)-Manifold Topology
Hempel, J.: 3-Manifolds. Princeton University Press, Princeton (1976)
MATH
Google Scholar
O’Neill, B.: Semi-Riemannian Geometry, Pure and Applied Mathematics, vol. 103. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1983)
Google Scholar
Penrose, R.: Techniques of differential topology in relativity. Society for Industrial and Applied Mathematics, Philadelphia (1972)
Planck Collaboration, Planck 2018 results, Astronomy and Astrophysics 641 (2020)
Wald, R.: General Relativity. University of Chicago Press, Chicago (1984)
Book
Google Scholar