Alama, S., Avellaneda, M., Deift, P., Hempel, R.: On the existence of eigenvalues of a divergence-form operator \(A+{\lambda }B\) in a gap of \(\sigma (A)\). Asympt. Anal. 8(4), 311–344 (1994)
MathSciNet
MATH
Google Scholar
Alama, S., Deift, P., Hempel, R.: Eigenvalue branches of the Schrödinger operator \(H-{\lambda }W\) in a gap of \(\sigma (H)\). Commun. Math. Phys. 121(2), 291–321 (1989)
ADS
Article
Google Scholar
Birman, M.: Discrete spectrum in gaps of a continuous one for perturbations with large coupling constants. Adv. Sov. Math. 7, 57–73 (1991)
MathSciNet
MATH
Google Scholar
Birman, M., Laptev, A.: Discrete spectrum of the perturbed Dirac operator. Ark. Matematik 32(1), 13–32 (1994)
ADS
MathSciNet
Article
Google Scholar
Birman, M., Sloushch, V.: Discrete spectrum of the periodic Schrödinger operator with a variable metric perturbed by a nonnegative potential. Math. Model. Nat. Phenom. 5(4), 32–53 (2010)
MathSciNet
Article
Google Scholar
Birman, M., Solomyak, M.: Spectral Theory of Self-adjoint Operators in Hilbert Space, 2nd edn. Izdatelstvo Lan, St. Petersburg (2010)
Google Scholar
Cwikel, M.: Weak type estimates for singular values and the number of bound states of Schrodinger operators. Ann. Math. (2) 106(1), 93–100 (1977)
MathSciNet
Article
Google Scholar
Deift, P., Hempel, R.: On the existence of eigenvalues of the Schrödinger operator \(H-{\lambda }W\) in a gap of \(\sigma (H)\). Commun. Math. Phys. 103, 461–490 (1986)
ADS
Article
Google Scholar
Gesztesy, F., Gurarie, D., Holden, H., Klaus, M., Sadun, L., Simon, B., Vogl, P.: Trapping and cascading of eigenvalues in the large coupling constant limit. Commun. Math. Phys. 118, 597–634 (1988)
ADS
Article
Google Scholar
Gesztesy, F., Simon, B.: On a theorem of Deift and Hempel. Commun. Math. Phys. 116, 503–505 (1988)
ADS
MathSciNet
Article
Google Scholar
Hempel, R.: On the asymptotic distribution of the eigenvalue branches of the Schrödinger operator \( H\pm {\lambda }W\) in a spectral gap of \(H\). J. Reine Angew. Math. 399, 38–59 (1989)
MathSciNet
MATH
Google Scholar
Hempel, R.: Eigenvalues in gaps and decoupling by Neumann boundary conditions. J. Math. Anal. Appl. 169(1), 229–259 (1992)
MathSciNet
Article
Google Scholar
Hempel, R.: Eigenvalues of Schrödinger operators in gaps of the essential spectrum: an overview. In: Contemporary Mathematics, vol. 458. AMS, Providence, RI (2008)
Klaus, M.: On the point spectrum of Dirac operators. Helv. Phys. Acta 53, 453–462 (1980)
MathSciNet
Google Scholar
Klaus, M.: Some applications of the Birman–Schwinger principle. Helv. Phys. Acta 55, 49–68 (1980)
MathSciNet
Google Scholar
Lieb, E.: Bounds on the eigenvalues of the Laplace and Schrödinger operators. Bull. Am. Math. Soc. 82, 751–753 (1976)
Article
Google Scholar
Lieb, E.: The number of bound states of one-body Schrödinger operators and the Weyl problem. In: Geometry of the Laplace Operator (Proceedings of Symposia in Pure Mathematics, 1979), pp. 241–252
Pushnitski, A.: Operator theoretic methods for the eigenvalue counting function in spectral gaps. Ann. Henri Poincare 10, 793–822 (2009)
ADS
MathSciNet
Article
Google Scholar
Rotfeld, SYu.: Remarks on singular numbers of the sum of totally continuous operators. Funct. Anal. Appl. 1(3), 95–96 (1967)
MathSciNet
Google Scholar
Rozenbljum, G.: The disctribution of discrete spectrum for singular differential operators. Dokl. Akad. Nauk SSSR 202:1012–1015. Soviet Math. Dokl. 13, 245–249 (1972)
Safronov, O.: The discrete spectrum of selfadjoint operators under perturbations of variable sign. Commun. PDE 26(3–4), 629–649 (2001)
MathSciNet
Article
Google Scholar
Safronov, O.: The discrete spectrum of the perturbed periodic Schrödinger operator in the large coupling constant limit. Commun. Math. Phys. 218(1), 217–232 (2001)
ADS
MathSciNet
Article
Google Scholar
Safronov, O.: The amount of discrete spectrum of a perturbed periodic Schrödinger operator inside a fixed interval \(({\lambda }_1, {\lambda }_2)\). Int. Math. Not. 9, 411–423 (2004)
Article
Google Scholar
Seiler, E., Simon, B.: Bounds in the Yukawa2 quantum field theory: upper bound on pressure, Hamiltonian bound and linear lower bound. Commun. Math. Phys. 45, 99–114 (1975)
ADS
MathSciNet
Article
Google Scholar
Sobolev, A.V.: Weyl asymptotics for the discrete spectrum of the perturbed Hill operator. Adv. Sov. Math. 7, 159–178 (1991)
MathSciNet
MATH
Google Scholar