Skip to main content
Log in

Discrete Spectrum of a Periodic Schrödinger Operator Perturbed by a Rapidly Decaying Potential

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

Let \([\lambda ,\mu ]\) be an interval contained in a spectral gap of a periodic Schrödinger operator H. Consider \(H(\alpha )=H-\alpha V\) where V is a fast decaying positive function. We study the asymptotic behavior of the number of eigenvalues of \(H(\alpha )\) in \([\lambda ,\mu ]\) as \(\alpha \rightarrow \infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alama, S., Avellaneda, M., Deift, P., Hempel, R.: On the existence of eigenvalues of a divergence-form operator \(A+{\lambda }B\) in a gap of \(\sigma (A)\). Asympt. Anal. 8(4), 311–344 (1994)

    MathSciNet  MATH  Google Scholar 

  2. Alama, S., Deift, P., Hempel, R.: Eigenvalue branches of the Schrödinger operator \(H-{\lambda }W\) in a gap of \(\sigma (H)\). Commun. Math. Phys. 121(2), 291–321 (1989)

    Article  ADS  Google Scholar 

  3. Birman, M.: Discrete spectrum in gaps of a continuous one for perturbations with large coupling constants. Adv. Sov. Math. 7, 57–73 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Birman, M., Laptev, A.: Discrete spectrum of the perturbed Dirac operator. Ark. Matematik 32(1), 13–32 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  5. Birman, M., Sloushch, V.: Discrete spectrum of the periodic Schrödinger operator with a variable metric perturbed by a nonnegative potential. Math. Model. Nat. Phenom. 5(4), 32–53 (2010)

    Article  MathSciNet  Google Scholar 

  6. Birman, M., Solomyak, M.: Spectral Theory of Self-adjoint Operators in Hilbert Space, 2nd edn. Izdatelstvo Lan, St. Petersburg (2010)

    Google Scholar 

  7. Cwikel, M.: Weak type estimates for singular values and the number of bound states of Schrodinger operators. Ann. Math. (2) 106(1), 93–100 (1977)

    Article  MathSciNet  Google Scholar 

  8. Deift, P., Hempel, R.: On the existence of eigenvalues of the Schrödinger operator \(H-{\lambda }W\) in a gap of \(\sigma (H)\). Commun. Math. Phys. 103, 461–490 (1986)

    Article  ADS  Google Scholar 

  9. Gesztesy, F., Gurarie, D., Holden, H., Klaus, M., Sadun, L., Simon, B., Vogl, P.: Trapping and cascading of eigenvalues in the large coupling constant limit. Commun. Math. Phys. 118, 597–634 (1988)

    Article  ADS  Google Scholar 

  10. Gesztesy, F., Simon, B.: On a theorem of Deift and Hempel. Commun. Math. Phys. 116, 503–505 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  11. Hempel, R.: On the asymptotic distribution of the eigenvalue branches of the Schrödinger operator \( H\pm {\lambda }W\) in a spectral gap of \(H\). J. Reine Angew. Math. 399, 38–59 (1989)

    MathSciNet  MATH  Google Scholar 

  12. Hempel, R.: Eigenvalues in gaps and decoupling by Neumann boundary conditions. J. Math. Anal. Appl. 169(1), 229–259 (1992)

    Article  MathSciNet  Google Scholar 

  13. Hempel, R.: Eigenvalues of Schrödinger operators in gaps of the essential spectrum: an overview. In: Contemporary Mathematics, vol. 458. AMS, Providence, RI (2008)

  14. Klaus, M.: On the point spectrum of Dirac operators. Helv. Phys. Acta 53, 453–462 (1980)

    MathSciNet  Google Scholar 

  15. Klaus, M.: Some applications of the Birman–Schwinger principle. Helv. Phys. Acta 55, 49–68 (1980)

    MathSciNet  Google Scholar 

  16. Lieb, E.: Bounds on the eigenvalues of the Laplace and Schrödinger operators. Bull. Am. Math. Soc. 82, 751–753 (1976)

    Article  Google Scholar 

  17. Lieb, E.: The number of bound states of one-body Schrödinger operators and the Weyl problem. In: Geometry of the Laplace Operator (Proceedings of Symposia in Pure Mathematics, 1979), pp. 241–252

  18. Pushnitski, A.: Operator theoretic methods for the eigenvalue counting function in spectral gaps. Ann. Henri Poincare 10, 793–822 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. Rotfeld, SYu.: Remarks on singular numbers of the sum of totally continuous operators. Funct. Anal. Appl. 1(3), 95–96 (1967)

    MathSciNet  Google Scholar 

  20. Rozenbljum, G.: The disctribution of discrete spectrum for singular differential operators. Dokl. Akad. Nauk SSSR 202:1012–1015. Soviet Math. Dokl. 13, 245–249 (1972)

  21. Safronov, O.: The discrete spectrum of selfadjoint operators under perturbations of variable sign. Commun. PDE 26(3–4), 629–649 (2001)

    Article  MathSciNet  Google Scholar 

  22. Safronov, O.: The discrete spectrum of the perturbed periodic Schrödinger operator in the large coupling constant limit. Commun. Math. Phys. 218(1), 217–232 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  23. Safronov, O.: The amount of discrete spectrum of a perturbed periodic Schrödinger operator inside a fixed interval \(({\lambda }_1, {\lambda }_2)\). Int. Math. Not. 9, 411–423 (2004)

    Article  Google Scholar 

  24. Seiler, E., Simon, B.: Bounds in the Yukawa2 quantum field theory: upper bound on pressure, Hamiltonian bound and linear lower bound. Commun. Math. Phys. 45, 99–114 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  25. Sobolev, A.V.: Weyl asymptotics for the discrete spectrum of the perturbed Hill operator. Adv. Sov. Math. 7, 159–178 (1991)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Safronov.

Additional information

Communicated by Jan Derezinski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safronov, O. Discrete Spectrum of a Periodic Schrödinger Operator Perturbed by a Rapidly Decaying Potential. Ann. Henri Poincaré 23, 1883–1907 (2022). https://doi.org/10.1007/s00023-021-01141-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-021-01141-1

Mathematics Subject Classification

Navigation