Abstract
Let \([\lambda ,\mu ]\) be an interval contained in a spectral gap of a periodic Schrödinger operator H. Consider \(H(\alpha )=H-\alpha V\) where V is a fast decaying positive function. We study the asymptotic behavior of the number of eigenvalues of \(H(\alpha )\) in \([\lambda ,\mu ]\) as \(\alpha \rightarrow \infty \).
Similar content being viewed by others
References
Alama, S., Avellaneda, M., Deift, P., Hempel, R.: On the existence of eigenvalues of a divergence-form operator \(A+{\lambda }B\) in a gap of \(\sigma (A)\). Asympt. Anal. 8(4), 311–344 (1994)
Alama, S., Deift, P., Hempel, R.: Eigenvalue branches of the Schrödinger operator \(H-{\lambda }W\) in a gap of \(\sigma (H)\). Commun. Math. Phys. 121(2), 291–321 (1989)
Birman, M.: Discrete spectrum in gaps of a continuous one for perturbations with large coupling constants. Adv. Sov. Math. 7, 57–73 (1991)
Birman, M., Laptev, A.: Discrete spectrum of the perturbed Dirac operator. Ark. Matematik 32(1), 13–32 (1994)
Birman, M., Sloushch, V.: Discrete spectrum of the periodic Schrödinger operator with a variable metric perturbed by a nonnegative potential. Math. Model. Nat. Phenom. 5(4), 32–53 (2010)
Birman, M., Solomyak, M.: Spectral Theory of Self-adjoint Operators in Hilbert Space, 2nd edn. Izdatelstvo Lan, St. Petersburg (2010)
Cwikel, M.: Weak type estimates for singular values and the number of bound states of Schrodinger operators. Ann. Math. (2) 106(1), 93–100 (1977)
Deift, P., Hempel, R.: On the existence of eigenvalues of the Schrödinger operator \(H-{\lambda }W\) in a gap of \(\sigma (H)\). Commun. Math. Phys. 103, 461–490 (1986)
Gesztesy, F., Gurarie, D., Holden, H., Klaus, M., Sadun, L., Simon, B., Vogl, P.: Trapping and cascading of eigenvalues in the large coupling constant limit. Commun. Math. Phys. 118, 597–634 (1988)
Gesztesy, F., Simon, B.: On a theorem of Deift and Hempel. Commun. Math. Phys. 116, 503–505 (1988)
Hempel, R.: On the asymptotic distribution of the eigenvalue branches of the Schrödinger operator \( H\pm {\lambda }W\) in a spectral gap of \(H\). J. Reine Angew. Math. 399, 38–59 (1989)
Hempel, R.: Eigenvalues in gaps and decoupling by Neumann boundary conditions. J. Math. Anal. Appl. 169(1), 229–259 (1992)
Hempel, R.: Eigenvalues of Schrödinger operators in gaps of the essential spectrum: an overview. In: Contemporary Mathematics, vol. 458. AMS, Providence, RI (2008)
Klaus, M.: On the point spectrum of Dirac operators. Helv. Phys. Acta 53, 453–462 (1980)
Klaus, M.: Some applications of the Birman–Schwinger principle. Helv. Phys. Acta 55, 49–68 (1980)
Lieb, E.: Bounds on the eigenvalues of the Laplace and Schrödinger operators. Bull. Am. Math. Soc. 82, 751–753 (1976)
Lieb, E.: The number of bound states of one-body Schrödinger operators and the Weyl problem. In: Geometry of the Laplace Operator (Proceedings of Symposia in Pure Mathematics, 1979), pp. 241–252
Pushnitski, A.: Operator theoretic methods for the eigenvalue counting function in spectral gaps. Ann. Henri Poincare 10, 793–822 (2009)
Rotfeld, SYu.: Remarks on singular numbers of the sum of totally continuous operators. Funct. Anal. Appl. 1(3), 95–96 (1967)
Rozenbljum, G.: The disctribution of discrete spectrum for singular differential operators. Dokl. Akad. Nauk SSSR 202:1012–1015. Soviet Math. Dokl. 13, 245–249 (1972)
Safronov, O.: The discrete spectrum of selfadjoint operators under perturbations of variable sign. Commun. PDE 26(3–4), 629–649 (2001)
Safronov, O.: The discrete spectrum of the perturbed periodic Schrödinger operator in the large coupling constant limit. Commun. Math. Phys. 218(1), 217–232 (2001)
Safronov, O.: The amount of discrete spectrum of a perturbed periodic Schrödinger operator inside a fixed interval \(({\lambda }_1, {\lambda }_2)\). Int. Math. Not. 9, 411–423 (2004)
Seiler, E., Simon, B.: Bounds in the Yukawa2 quantum field theory: upper bound on pressure, Hamiltonian bound and linear lower bound. Commun. Math. Phys. 45, 99–114 (1975)
Sobolev, A.V.: Weyl asymptotics for the discrete spectrum of the perturbed Hill operator. Adv. Sov. Math. 7, 159–178 (1991)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Jan Derezinski.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
Rights and permissions
About this article
Cite this article
Safronov, O. Discrete Spectrum of a Periodic Schrödinger Operator Perturbed by a Rapidly Decaying Potential. Ann. Henri Poincaré 23, 1883–1907 (2022). https://doi.org/10.1007/s00023-021-01141-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00023-021-01141-1