Skip to main content

Edge Behavior of Two-Dimensional Coulomb Gases Near a Hard Wall

Abstract

We consider a two-dimensional determinantal Coulomb gas confined by a class of radial external potentials. In the limit of large number of particles, the Coulomb particles tend to accumulate on a compact set S, the support of the equilibrium measure associated with a given external potential. If the particles are forced to be completely confined in a disk \({\mathcal {D}}\) due to a hard-wall constraint on \({\partial }{\mathcal {D}}\subset {\text {Int}}S\), then the equilibrium configuration changes and the equilibrium measure acquires a singular component at the hard wall. We study the local statistics of Coulomb particles in the vicinity of the hard wall and prove that their local correlations are expressed in terms of “Laplace-type” integrals, which appear in the context of truncated unitary matrices in the regime of weak non-unitarity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Ameur, Y.: A note on normal matrix ensembles at the hard edge. Preprint at arXiv: 1808.06959

  2. Ameur, Y., Byun, S.-S.: Almost-Hermitian random matrices and bandlimited point processes. Preprint at arXiv:2101.03832

  3. Ameur, Y., Hedenmalm, H., Makarov, N.: Fluctuations of eigenvalues of random normal matrices. Duke Math. J. 159, 31–81 (2011)

    MathSciNet  Article  Google Scholar 

  4. Ameur, Y., Hedenmalm, H., Makarov, N.: Ward identities and random normal matrices. Ann. Probab. 43, 1157–1201 (2015)

    MathSciNet  Article  Google Scholar 

  5. Ameur, Y., Kang, N.-G., Makarov, N.: Rescaling Ward identities in the random normal matrix model. Constr. Approx. 50, 63–127 (2019)

    MathSciNet  Article  Google Scholar 

  6. Ameur, Y., Kang, N.-G., Makarov, N., Wennman, A.: Scaling limits of random normal matrix processes at singular boundary points. J. Funct. Anal. 278(3), 108340 (2020)

    MathSciNet  Article  Google Scholar 

  7. Ameur, Y., Kang, N.-G., Seo, S.-M.: On boundary confinements for the coulomb gas. Anal. Math. Phys. 10, 68 (2020)

    MathSciNet  Article  Google Scholar 

  8. Ameur, Y., Kang, N.-G., Seo, S.-M.: The random normal matrix model: insertion of a point charge. Potential Anal (2021). https://doi.org/10.1007/s11118-021-09942-z

    Article  Google Scholar 

  9. Bauerschmidt, R., Bourgade, P., Nikula, M., Yau, H.T.: Local density for two-dimensional one-component plasma. Commun. Math. Phys. 356, 189–230 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  10. Bauerschmidt, R., Bourgade, P., Nikula, M., Yau, H.T.: The two-dimensional Coulomb plasma: quasi-free approximation and central limit theorem. Adv. Theor. Math. Phys. 23(4), 841–1002 (2019)

    MathSciNet  Article  Google Scholar 

  11. Berman, R.J.: Determinantal point processes and fermions on polarized complex manifolds: bulk universality. In: Algebraic and Analytic Microlocal Analysis, Springer Proc. Math. Stat., vol. 269, pp. 341–393. Springer, Cham (2018)

  12. Butez, R., García-Zelada, D.: Extremal particles of two-dimensional Coulomb gases and random polynomials on a positive background. arXiv: 1811.12225

  13. Chafaï, D., Péché, S.: A note on the second order universality at the edge of Coulomb gases on the plane. J. Stat. Phys. 156, 368–383 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  14. Chafaï, D., García-Zelada, D., Jung, P.: Macroscopic and edge behavior of a planar jellium. J. Math. Phys. 61(3), 033304 (2020)

    ADS  MathSciNet  Article  Google Scholar 

  15. Chau, L.-L., Zaboronsky, O.: On the structure of correlation functions in the normal matrix model. Commun. Math. Phys. 196(1), 203–247 (1998)

    ADS  MathSciNet  Article  Google Scholar 

  16. Claeys, T., Kuijlaars, A.B.J.: Universality in unitary random matrix ensembles when the soft edge meets the hard edge. Contemp. Math. 458, 265–280 (2008)

    MathSciNet  Article  Google Scholar 

  17. Cunden, F.D., Facchi, P., Ligabò, M., Vivo, P.: Universality of the third-order phase transition in the constrained Coulomb gas. J. Stat. Mech Theory Exp. 053303 (2017)

  18. Deift, P., Gioev, D.: Random Matrix Theory: Invariant Ensembles and Universality. Courant Lecture Notes in Mathematics, vol. 18, Courant Institute of Mathematical Sciences, New York. American Mathematical Society, Providence (2009)

  19. Elbau, P., Felder, G.: Density of eigenvalues of random normal matrices. Commun. Math. Phys. 259(2), 433–450 (2005)

    ADS  MathSciNet  Article  Google Scholar 

  20. Forrester, P.J.: Log-gases and Random Matrices (LMS-34). Princeton University Press, Princeton (2010)

    Book  Google Scholar 

  21. Fyodorov, Y.V., Khoruzhenko, B.A.: Systematic analytical approach to correlation functions of resonances in quantum chaotic scattering. Phys. Rev. Lett. 83, 65–68 (1999)

    ADS  Article  Google Scholar 

  22. Fyodorov, Y.V., Mehlig, B.: On the statistics of resonances and non-orthogonal eigenfunctions in a model for single-channel chaotic scattering. Phys. Rev. E 66, 045202 (2002)

    ADS  Article  Google Scholar 

  23. Fyodorov, Y.V., Sommers, H.J.: Spectra of random contractions and scattering theory for discrete-time systems. JETP Lett. 72, 422–426 (2000)

    ADS  Article  Google Scholar 

  24. Fyodorov, Y.V., Sommers, H.J.: Random matrices close to Hermitian or unitary: overview of methods and results. J. Phys. A. 36(12), 3303–3347 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  25. García-Zelada, D.: Edge fluctuations for a class of two-dimensional determinantal Coulomb gases. Preprint at arXiv:1812.11170

  26. Ghosh, S., Nishry, A.: Gaussian complex zeros on the hole event: the emergence of a forbidden region. Commun. Pure Appl. Math. 72(1), 3–62 (2019)

    MathSciNet  Article  Google Scholar 

  27. Ginibre, J.: Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6, 440–449

  28. Gui, W., Qi, Y.: Spectral radii of truncated circular unitary matrices. J. Math. Anal. Appl. 458(1), 536–554 (2018)

    MathSciNet  Article  Google Scholar 

  29. Hedenmalm, H., Makarov, N.: Coulomb gas ensembles and Laplacian growth. Proc. Lond. Math. Soc. 106, 859–907 (2013)

    MathSciNet  Article  Google Scholar 

  30. Hedenmalm, H., Wennman, A.: Planar orthogonal polynomials and boundary universality in the random normal matrix model. Preprint at arXiv: 1710.06493

  31. Hedenmalm, H., Wennman, A.: Riemann–Hilbert hierarchies for hard edge planar orthogonal polynomials. Preprint at arXiv:2008.02682

  32. Hiai, F., Petz, D.: Logarithmic energy as an entropy functional. In: Carlen, E., Harrell, E.M., Los,s M. (eds.) Advances in Differential Equations and Mathematical Physics. Contemp. Math., vol. 217, pp. 205–221 (1998)

  33. Kang, N.-G., Makarov, N.: Gaussian free field and conformal field theory. Astérisque 353 (2013)

  34. Kostlan, E.: On the spectra of Gaussian matrices. Linear Algebra Appl. 162(164), 385–388 (1992)

    MathSciNet  Article  Google Scholar 

  35. Lacroix-A-Chez-Toine, B., Grabsch, A., Majumdar, S.N., Schehr, G.: Extremes of 2d Coulomb gas: universal intermediate deviation regime. J. Stat. Mech. Theory Exp. (1) 013203 (2018)

  36. Leblé, T.: Local microscopic behavior for 2D Coulomb gases. Probab. Theory Relat. Fields 169(3–4), 931–976 (2017)

    MathSciNet  Article  Google Scholar 

  37. Lee, S.-Y., Makarov, N.: Topology of quadrature domains. J. Am. Math. Soc. 29, 333–369 (2016)

    MathSciNet  Article  Google Scholar 

  38. Mehta, M.L.: Random Matrices, 3rd edn. Academic Press, New York (2004)

    MATH  Google Scholar 

  39. Nagao, T., Akemann, G., Kieburg, M., Parra, I.: Families of two-dimensional Coulomb gases on an ellipse: correlation functions and universality. J. Phys. A 53(7), 075201 (2020)

    ADS  MathSciNet  Article  Google Scholar 

  40. Rider, B.: A limit theorem at the edge of a non-Hermitian random matrix ensemble. J. Phys. A 36, 3401–3409 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  41. Rider, B., Virág, B.: The noise in the circular law and the Gaussian free field. Int. Math. Res. Not. (2): Art. ID rnm006, 33 (2007)

  42. Saff, E.B., Totik, V.: Logarithmic Potentials with External Fields. Springer, Berlin (1997)

    Book  Google Scholar 

  43. Seo, S.-M.: Edge scaling limit of the spectral radius for random normal matrix ensembles at hard edge. J. Stat. Phys. 181, 1473–1489 (2020)

    ADS  MathSciNet  Article  Google Scholar 

  44. Smith, E.R.: Effects of surface charge on the two-dimensional one-component plasma. I. Single double layer structure. J. Phys. A 15(4), 1271–1281 (1982)

    ADS  MathSciNet  Article  Google Scholar 

  45. Tracy, C.A., Widom, H.: Level-spacing distributions and the Bessel kernel. Commun. Math. Phys. 161, 289–309 (1994)

    ADS  MathSciNet  Article  Google Scholar 

  46. Wiegmann, P., Zabrodin, A.: Large N expansion for the 2D Dyson gas. J. Phys. A. Math. Gen. 39, 8933–8964 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  47. Zabrodin, A.: Random matrices and Laplacian growth. In: The Oxford Handbook of Random Matrix Theory, pp. 802–823. Oxford Univ. Press, Oxford (2011)

  48. Życzkowski, K., Sommers, H.J.: Truncations of random unitary matrices. J. Phys. A 33(10), 2045–2057 (2000)

    ADS  MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The author thanks Nam-Gyu Kang for valuable advice and helpful discussions. This work was partially supported by the KIAS Individual Grant (MG063103) at Korea Institute for Advanced Study and by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (No. 2019R1F1A1058006) and (No. 2019R1A5A1028324).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Mi Seo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Vadim Gorin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seo, SM. Edge Behavior of Two-Dimensional Coulomb Gases Near a Hard Wall. Ann. Henri Poincaré 23, 2247–2275 (2022). https://doi.org/10.1007/s00023-021-01126-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-021-01126-0

Keywords

  • 2D Coulomb gases
  • Hard wall
  • Universality
  • Ward’s equation

Mathematics Subject Classification

  • 60B20
  • 60G55
  • 82D10