Skip to main content

Resonances as Viscosity Limits for Black Box Perturbations


We show that the complex absorbing potential (CAP) method for computing scattering resonances applies to an abstractly defined class of black box perturbations of the Laplacian in \({{\mathbb {R}}}^n\) which can be analytically extended from \({{\mathbb {R}}}^n\) to a conic neighborhood in \({{\mathbb {C}}}^n\) near infinity. The black box setting allows a unifying treatment of diverse problems ranging from obstacle scattering to scattering on finite volume surfaces.

This is a preview of subscription content, access via your institution.


  1. 1.

    Aguilar, J., Combes, J.M.: A class of analytic perturbations for one-body Schrödinger Hamiltonians. Comm. Math. Phys. 22, 269–279 (1971)

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    Balslev, E., Combes, J.M.: Spectral properties of many-body Schrödinger operators with dilation analytic interactions. Comm. Math. Phys. 22, 280–294 (1971)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Dang, N.V., Rivière, G.: Pollicott-Ruelle spectrum and witten laplacians.. J. Eur. Math. Soc. arXiv: 1709.04265 (to appear)

  4. 4.

    Davies, E.B.: Pseudospectra, the harmonic oscillator and complex resonances. Proc. R. Soc. Lond. A 455, 585–599 (1999)

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Drouot, A.: Stochastic Stability of Pollicott-Ruelle Resonances. Comm. Math. Phys. 356, 357–396 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    Dyatlov, S., Zworski, M.: Stochastic stability of Pollicott-Ruelle resonances. Nonlinearity 28, 3511–3534 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    Dyatlov, S., Zworski, M.: Mathematical theory of scattering resonances. Graduate Stud Math 200, AMS (2019)

  8. 8.

    Frenkel, E., Losev, A., Nekrasov, N.: Instantons beyond topological theory. I, J. Inst. Math. Jussieu, 10(2011), 463–565

  9. 9.

    Galkowski, J., Zworski, M.: Viscosity limits for 0th order pseudodifferential operators, arXiv: 1912.09840

  10. 10.

    Gohberg, I.C.U., Sigal, E. I.: An operator generalization of the logarithmic residue theorem and the theorem of Rouché. Math. U.S.S.R. Sbornik 13, 607–629 (1971)

  11. 11.

    Hitrik, M., Sjöstrand, J., Viola, J.: Resolvent estimates for elliptic quadratic differential operators. Anal. PDE 6, 181–196 (2013)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Hörmander, L.: The Analysis of Linear Partial Differential Operators III: Pseudo-differential operators, Springer Science & Business Media (2007)

  13. 13.

    Jagau, T.-C., Zuev, D., Bravaya, K.B., Epifanovsky, E., Krylov, A.I.: A fresh look at resonances and complex absorbing potentials: density matrix-based approach. J. Phys. Chem. Lett. 5, 310–315 (2014)

    Article  Google Scholar 

  14. 14.

    Kameoka, K., Nakamura, S.: Resonances and viscosity limit for the Wigner-von Neumann type Hamiltonian. arXiv: 2003.07001

  15. 15.

    Klopp, F., Zworski, M.: Generic simplicity of resonances. Helv. Phys. Acta 68, 531–538 (1995)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Lee, J.M., Uhlmann, G.: Determining anisotropic real-analytic conductivities by boundary measurements. Commun. Pure Appl. Math. 42, 1097–1112 (1989)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Nonnenmacher, S., Zworski, M.: Quantum decay rates in chaotic scattering. Acta Math. 203, 149–233 (2009)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Nonnenmacher, S., Zworski, M.: Decay of correlations for normally hyperbolic trapping. Invent. Math. 200, 345–438 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    Pereira, M.: Generic simplicity of eigenvalues for a Dirichlet problem of the bilaplacian operator. Electron. J. Differ. Equ. 2004, 1–21 (2004)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Riss, U.V., Meyer, H.D.: Reflection-free complex absorbing potentials. J. Phys. B 28, 1475–1493 (1995)

    ADS  Article  Google Scholar 

  21. 21.

    Seideman, T., Miller, W.H.: Calculation of the cumulative reaction probability via a discrete variable representation with absorbing boundary conditions. J. Chem. Phys. 96, 4412–4422 (1992)

    ADS  Article  Google Scholar 

  22. 22.

    Shubin, M.A.: Spectral theory of elliptic operators on noncompact manifolds. Astérisque 207, 35–108 (1992)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Simon, B.: The definition of molecular resonance curves by the method of exterior complex scaling. Phys. Lett. A 71, 211–214 (1979)

    ADS  Article  Google Scholar 

  24. 24.

    Sjöstrand, J.: A trace formula and review of some estimates for resonances. In: Microlocal Analysis and Spectral Theory, vol. 490 of NATO ASI series C, pp. 377–437. Kluwer (1997)

  25. 25.

    Sjöstrand, J.: Lectures on resonances. (2002)

  26. 26.

    Sjöstrand, J., Zworski, M.: Complex scaling and the distribution of scattering poles. J. Am. Math. Soc. 4, 729–769 (1991)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Stefanov, P.: Stability of resonances under smooth perturbations of the boundary. Asymp. Anal. 9, 291–296 (1994)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Stefanov, P.: Approximating resonances with the complex absorbing potential method. Comm. Partial Differ. Equ. 30, 1843–1862 (2005)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Vasy, A.: Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces, with an appendix by Semyon Dyatlov. Invent. Math. 194, 381–513 (2013). arXiv: 1012.4391

  30. 30.

    Xiong, Haoren: Resonances as viscosity limits for exponentially decaying potentials. J. Math. Phys. 62, 022101 (2021)

    ADS  MathSciNet  Article  Google Scholar 

  31. 31.

    Zworski, M.: Scattering resonances as viscosity limits. In: Hitrik, M., Tamarkin, D., Tsygan, B., Zelditch, S. (eds.) Algebraic and Analytic Microlocal Analysis. Springer (2018)

Download references


The author would like to thank Maciej Zworski for helpful discussions. I am also grateful to the anonymous referees for the careful reading of the first version and for many valuable comments. This project was supported in part by the National Science Foundation grant DMS-1901462.

Author information



Corresponding author

Correspondence to Haoren Xiong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Jan Derezinski.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiong, H. Resonances as Viscosity Limits for Black Box Perturbations. Ann. Henri Poincaré (2021).

Download citation