Abstract
Consider a point particle moving through a Poisson distributed array of cubes all oriented along the axes—the random wind-tree model introduced in Ehrenfest–Ehrenfest (1912) as reported by Ehrenfest, Ehrenfest (Begriffliche Grundlagen der statistischen Auffassung in der Mechanik Encykl. d. Math. Wissensch. IV 2 II, Heft 6, 90 S (1912) (Translated:) The conceptual foundations of the statistical approach in mechanics. Dover Books on Physics, 1912). We show that in the joint Boltzmann–Grad and diffusive limit this process satisfies an invariance principle. That is, the process converges in distribution to Brownian motion in a particular scaling limit. In a previous paper (2020) (Lutsko, Tóth in Commun. Math. Phys. 379:589–632, 2020) the authors used a novel coupling method to prove the same statement for the random Lorentz gas with spherical scatterers. In this paper we show that, despite the change in dynamics, a similar strategy with some modification can be used to prove the invariance principle for the random wind-tree model. The key differences from our previous work are that the individual path segments of the underlying Markov process are no longer fully independent and the geometry of recollisions is simpler.
Similar content being viewed by others
References
Avila, A., Hubert, P.: Recurrence for the wind-tree model. Ann. I. H, Poincaré - AN 37, 1–11 (2017)
Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)
Boldrighini, C., Bunimovich, L.A., Sinai, Y.G.: On the Boltzmann equation for the Lorentz gas. J. Stat. Phys. 32, 477–501 (1983)
Delecroix, V.: Divergent trajectories in the periodic wind-tree model. J. Modern Dyn. 7, 1–29 (2013)
Delecroix, V., Hubert, P., Lelièvre, S.: Diffusion for the wind tree model. Ann. Sci. Ec. Norm. Supér. (4)47(6), 1085–1110 (2014)
Ehrenfest, P., Ehrenfest, T.: Begriffliche Grundlagen der statistischen Auffassung in der Mechanik Encykl. d. Math. Wissensch. IV 2 II, Heft 6, 90 S (1912) (Translated:) The conceptual foundations of the statistical approach in mechanics. Dover Books on Physics 9780486662503 (1959)
Fraczek, K., Ulcigrai, C.: Non-ergodic \(z\)-periodic billiards and infinite translation surfaces. Invent. Math. 197(2), 241–298 (2014)
Gallavotti, G.: Divergencies and the approach to equilibrium in the Lorentz and the wind-tree models. Phys. Rev. 185, 308–322 (1969)
Gallavotti, G.: Rigorous theory of the Boltzmann equation in the Lorentz gas. Nota Int. Univ. di Roma 358, 21 (1970)
Hardy, J., Weber, J.: Diffusion in a periodic wind-tree model. J. Math. Phys. 21, 1802 (1980)
Hubert, P., Lelièvre, S., Troubetzkoy, S.: The Ehrenfest wind-tree model: periodic directions, recurrence, diffusion. J. Reine Angew. Math. 656, 223–244 (2011)
Lorentz, H.A. : The motion of electrons in metallic bodies. In: Proc. Amstredam Acad. 7: 438, 585, 604 (1905)
Lutsko, C., Tóth, B.: Invariance principle for the random Lorentz gas - beyond the Boltzmann-Grad limit. Commun. Math. Phys. 379(2), 589–632 (2020)
Málaga Sabogal, A., Troubetzkoy, S.: Infinite ergodic index of the Ehrenfest wind-tree model: Communications in Mathematical Physics 358, 995–1006 (2018)
Marklof, J.: The low-density limit of the Lorentz gas: periodic, aperiodic and random. In: Proceedings of the International Congress of Mathematicians – 2014 Seoul Vol. 3, 623-646, Kyung Moon Sa, Seoul, (2014)
Marklof, J., Strömbergsson, A.: Kinetic theory for the low density Lorentz gas. arXiv:1910.04982 [math.DS] (2019)
Spohn, H.: The Lorentz process converges to a random flight process. Commun. Math. Phys. 60, 277–290 (1978)
Tabachnikov, S.: Billiards. Panoramas et Synthèses, Société mathématique de France 1 (1995)
Acknowledgements
The work of BT was supported by EPSRC (UK) Fellowship EP/P003656/1 and by NKFI (HU) K-129170. CL was supported by EPSRC Studentship EP/N509619/1 1793795.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Christian Maes.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Lutsko, C., Tóth, B. Invariance Principle for the Random Wind-Tree Process. Ann. Henri Poincaré 22, 3357–3389 (2021). https://doi.org/10.1007/s00023-021-01106-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00023-021-01106-4