Skip to main content

The Vanishing of the Fundamental Gap of Convex Domains in \(\mathbb {H}^n\)


For the Laplace operator with Dirichlet boundary conditions on convex domains in \(\mathbb H^n\), \(n\ge 2\), we prove that the product of the fundamental gap with the square of the diameter can be arbitrarily small for domains of any diameter.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    It is the case that \(\lambda _2 = \lambda _2(\Omega _{\sqrt{\mu }, L})\) for \(\mu \) large. Lemma 5.1 and Proposition 5.2 show that for \(\eta \in (0, L)\) and \(\mu > \mu _2\), we have \( \lambda _1^{4\mu } \ge (\cos L)^2 4 \mu > (\cos \eta )^2 \mu \ge \lambda _2^{\mu }, \) where \(\lambda _1^{4\mu }\) is the first eigenvalue of \( h_{\varphi \varphi }+\lambda (\sec \varphi )^{2} h=4\mu h\).


  1. 1.

    Andrews, B., Clutterbuck, J.: Proof of the fundamental gap conjecture. J. Am. Math. Soc. 24(3), 899–916 (2011)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Artamoshin, S.: Lower bounds for the first Dirichlet eigenvalue of the Laplacian for domains in hyperbolic space. Math. Proc. Cambridge Philos. Soc. 160(2), 191–208 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Ashbaugh, M.S., Benguria, R.: Optimal lower bound for the gap between the first two eigenvalues of one-dimensional Schrödinger operators with symmetric single-well potentials. Proc. Am. Math. Soc. 105(2), 419–424 (1989)

    MATH  Google Scholar 

  4. 4.

    Benguria, R.D., Linde, H.: A second eigenvalue bound for the Dirichlet Laplacian in hyperbolic space. Duke Math. J. 140(2), 245–279 (2007)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Bourni, T., Clutterbuck, J., Nguyen, X.H., Stancu, A., Wei, G., Wheeler, V-M.: Explicit fundamental gap estimates for some convex domains in \({\mathbb{H}}^2\). To appear in Mathematical Research Letters. arXiv:1911.12892 (2019)

  6. 6.

    Brascamp, H.J., Lieb, E.: On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22(4), 366–389 (1976)

    Article  Google Scholar 

  7. 7.

    Dai, X., Seto, S., Wei, G.: Fundamental gap estimate for convex domains on sphere—the case \(n= 2\). To appear in Comm. in Analysis and Geometry, arXiv:1803.01115 (2018)

  8. 8.

    Dai, X., Seto, S., Wei, G.: Fundamental gap comparison. Surv. Geom. Anal. 2018, 1–16 (2019)

    Google Scholar 

  9. 9.

    do Carmo, M.P.: Riemannian Geometry: Theory & Applications. Birkhäuser Boston Inc, Boston (1992)

    Book  Google Scholar 

  10. 10.

    Gage, M.E.: Upper bounds for the first eigenvalue of the Laplace-Beltrami operator. Indiana Univ. Math. J. 29(6), 897–912 (1980)

    MathSciNet  Article  Google Scholar 

  11. 11.

    He, C., Wei, G., Zhang, Q.S.: Fundamental gap of convex domains in the spheres. Am. J. Math. 142(4), 1161–1192 (2020)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators: Frontiers in Mathematics. Birkhäuser Verlag, Basel (2006)

    Book  Google Scholar 

  13. 13.

    McKean, H.P.: An upper bound to the spectrum of \(\Delta \) on a manifold of negative curvature. J. Differ. Geom. 4, 359–366 (1970)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Savo, A.: On the lowest eigenvalue of the Hodge Laplacian on compact, negatively curved domains. Ann. Global Anal. Geom. 35(1), 39–62 (2009)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Seto, S., Wang, L., Wei, G.: Sharp fundamental gap estimate on convex domains of sphere. J. Differ. Geom. 112(2), 347–389 (2019)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Shih, Y.: A counterexample to the convexity property of the first eigenfunction on a convex domain of negative curvature. Commun. Partial Differ. Equ. 14(7), 867–876 (1989)

    MathSciNet  Article  Google Scholar 

  17. 17.

    van den Berg, M.: On condensation in the free-boson gas and the spectrum of the Laplacian. J. Stat. Phys. 31(3), 623–637 (1983)

    ADS  MathSciNet  Article  Google Scholar 

  18. 18.

    Yau, S-T.: Nonlinear analysis in geometry, volume 33 of Monographies de L’Enseignement Mathématique. L’Enseignement Mathématique, Geneva, 1986. Série des Conférences de l’Union Mathématique Internationale, 8

Download references


This research originated at the workshop “Women in Geometry 2” at the Casa Matemática Oaxaca (CMO) from June 23 to June 28, 2019. We would like to thank CMO-BIRS for creating the opportunity to start work on this problem through their support of the workshop. Julie Clutterbuck thanks Ben Andrews for a useful discussion about the existence of a double-peaked eigenfunction.

Author information



Corresponding author

Correspondence to Julie Clutterbuck.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of Julie Clutterbuck was supported by Grant FT1301013 of the Australian Research Council. The research of Xuan Hien Nguyen was supported by Grant 579756 of the Simons Foundation. The research of Alina Stancu was supported by NSERC Discovery Grant RGPIN 327635. The research of Guofang Wei was supported by NSF Grant DMS 1811558. The research of Valentina-Mira Wheeler was supported by Grants DP180100431 and DE190100379 of the Australian Research Council.

Communicated by Claude-Alain Pillet.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bourni, T., Clutterbuck, J., Nguyen, X.H. et al. The Vanishing of the Fundamental Gap of Convex Domains in \(\mathbb {H}^n\). Ann. Henri Poincaré (2021).

Download citation