Skip to main content
Log in

Optimization Over Trace Polynomials

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

Motivated by recent progress in quantum information theory, this article aims at optimizing trace polynomials, i.e., polynomials in noncommuting variables and traces of their products. A novel Positivstellensatz certifying positivity of trace polynomials subject to trace constraints is presented, and a hierarchy of semidefinite relaxations converging monotonically to the optimum of a trace polynomial subject to tracial constraints is provided. This hierarchy can be seen as a tracial analog of the Pironio, Navascués and Acín scheme (Pironio et al. in New J. Phys. 10(7):073013, 2008) for optimization of noncommutative polynomials. The Gelfand–Naimark–Segal (GNS) construction is applied to extract optimizers of the trace optimization problem if flatness and extremality conditions are satisfied. These conditions are sufficient to obtain finite convergence of our hierarchy. The results obtained are applied to violations of polynomial Bell inequalities in quantum information theory. The main techniques used in this paper are inspired by real algebraic geometry, operator theory, and noncommutative algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anjos, M.F., Lasserre, J.B. (eds.): Handbook on Semidefinite, Conic and Polynomial Optimization. International Series in Operations Research& Management Science, vol. 166. Springer, New York (2012)

    MATH  Google Scholar 

  2. Ayupov, S., Rakhimov, A., Usmanov, S.: Jordan, Real and Lie Structures in Operator Algebras. Mathematics and Its Applications, vol. 418. Kluwer Academic Publishers Group, Dordrecht (1997)

    Book  MATH  Google Scholar 

  3. Barvinok, A.: A Course in Convexity. Graduate Studies in Mathematics, vol. 54. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  4. Burgdorf, S., Cafuta, K., Klep, I., Povh, J.: The tracial moment problem and trace-optimization of polynomials. Math. Program. 137(1–2, Ser. A), 557–578 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bardet, I., Collins, B., Sapra, G.: Characterization of equivariant maps and application to entanglement detection. Ann. Henri Poincaré 21(10), 3385–3406 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Phys. Phys. Fizika 1(3), 195 (1964)

    Article  MathSciNet  Google Scholar 

  7. Burgdorf, S., Klep, I., Povh, J.: Optimization of Polynomials in Non-commuting Variables. SpringerBriefs in Mathematics, Springer, Cham (2016)

    MATH  Google Scholar 

  8. Bessis, D., Moussa, P., Villani, M.: Monotonic converging variational approximations to the functional integrals in quantum statistical mechanics. J. Math. Phys. 16(11), 2318–2325 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Branciard, C., Rosset, D., Gisin, N., Pironio, S.: Bilocal versus nonbilocal correlations in entanglement-swapping experiments. Phys. Rev. A 85, 032119 (2012)

    Article  ADS  Google Scholar 

  10. Curto, R.E., Fialkow, L.A.: Flat extensions of positive moment matrices: recursively generated relations. Mem. Am. Math. Soc. 136(648), 254 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Chaves, R.: Polynomial Bell inequalities. Phys. Rev. Lett. 116(1), 010402 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15), 880 (1969)

    Article  ADS  MATH  Google Scholar 

  13. Cafuta, K., Klep, I., Povh, J.: NCSOStools: a computer algebra system for symbolic and numerical computation with noncommutative polynomials. Optim. Methods Softw. 26(3), 363–380 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cafuta, K., Klep, I., Povh, J.: Constrained polynomial optimization problems with noncommuting variables. SIAM J. Optim. 22(2), 363–383 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Doherty, A.C., Liang, Y.-C., Toner, B., Wehner, S.: The quantum moment problem and bounds on entangled multi-prover games. In: 2008 23rd Annual IEEE Conference on Computational Complexity, pp. 199–210. IEEE (2008)

  16. de Oliveira, M.C., Helton, J.W., McCullough, S.A., Putinar, M.: Engineering systems and free semi-algebraic geometry. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry. The IMA Volumes in Mathematics and Its Applications, vol. 149, pp. 17–61. Springer, New York (2009)

    Chapter  MATH  Google Scholar 

  17. Dykema, K.J.: Factoriality and Connes’ invariant \(T({{\cal{M}}})\) for free products of von Neumann algebras. J. Reine Angew. Math. 450, 159–180 (1994)

  18. Eggeling, T., Werner, R.F.: Separability properties of tripartite states with \(U\otimes U\otimes U\) symmetry. Phys. Rev. A (3) 63(4), 042111 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Fukuda, M., Nechita, I.: Asymptotically well-behaved input states do not violate additivity for conjugate pairs of random quantum channels. Commun. Math. Phys. 328(3), 995–1021 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Gribling, S., de Laat, D., Laurent, M.: Bounds on entanglement dimensions and quantum graph parameters via noncommutative polynomial optimization. Math. Program. 170(1, Ser. B), 5–42 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gribling, S., de Laat, D., Laurent, M.: Lower bounds on matrix factorization ranks via noncommutative polynomial optimization. Found. Comput. Math. 19, 1013–1070 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hadwin, D.: A noncommutative moment problem. Proc. Am. Math. Soc. 129(6), 1785–1791 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Helton, J.W.: “Positive” noncommutative polynomials are sums of squares. Ann. of Math. (2) 156(2), 675–694 (2002)

  24. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of \(n\)-particle mixed states: necessary and sufficient conditions in terms of linear maps. Phys. Lett. A 283(1), 1–7 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Helton, J.W., Klep, I., McCullough, S.: Proper analytic free maps. J. Funct. Anal. 260(5), 1476–1490 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hiai, F., König, R., Tomamichel, M.: Generalized log-majorization and multivariate trace inequalities. Ann. Henri Poincaré 18(7), 2499–2521 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Helton, J.W., McCullough, S.A.: A Positivstellensatz for non-commutative polynomials. Trans. Am. Math. Soc. 356(9), 3721–3737 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Huber, F.: Positive maps and trace polynomials from the symmetric group. J. Math. Phys 62(2), 022203 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Ji, Z., Natarajan, A., Vidick, T., Wright, J., Yuen, H.: MIP* = RE. arXiv preprint arXiv:2001.04383 (2020)

  30. Klep, I., Magron, V., Povh, J.: Sparse noncommutative polynomial optimization. arXiv preprint arXiv:1909.00569 (2019)

  31. Klep, I., Povh, J., Volčič, J.: Minimizer extraction in polynomial optimization is robust. SIAM J. Optim. 28(4), 3177–3207 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Klep, I., Schweighofer, M.: Connes’ embedding conjecture and sums of Hermitian squares. Adv. Math. 217(4), 1816–1837 (2008)

  33. Klep, I., Špenko, Š: Free function theory through matrix invariants. Can J. Math. 69(2), 408–433 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Klep, I., Špenko, Š, Volčič, J.: Positive trace polynomials and the universal Procesi–Schacher conjecture. Proc. Lond. Math. Soc. 117(6), 1101–1134 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lam, T.-Y.: A First Course in Noncommutative Rings, vol. 131. Springer, Berlin (2013)

    Google Scholar 

  36. Lasserre, J.-B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3):796–817 (2000/01)

  37. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry. The IMA Volumes in Mathematics and Its Applications, vol. 149, pp. 157–270. Springer, New York (2009)

    Chapter  Google Scholar 

  38. Lax, P.D.: Differential equations, difference equations and matrix theory. Commun. Pure Appl. Math. 11, 175–194 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lasserre, J.B., Laurent, M., Rostalski, P.: Semidefinite characterization and computation of zero-dimensional real radical ideals. Found. Comput. Math. 8(5), 607–647 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lieb, E.H., Seiringer, R.: Equivalent forms of the Bessis–Moussa–Villani conjecture. J. Stat. Phys. 115(1–2), 185–190 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Marshall, M.: Positive Polynomials and Sums of Squares. Mathematical Surveys and Monographs, vol. 146. American Mathematical Society, Providence (2008)

    MATH  Google Scholar 

  42. McCullough, S.: Factorization of operator-valued polynomials in several non-commuting variables. Linear Algebra Appl. 326(1–3), 193–203 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Murota, K., Kanno, Y., Kojima, M., Kojima, S.: A numerical algorithm for block-diagonal decomposition of matrix *-algebras with application to semidefinite programming. Jpn. J. Ind. Appl. Math. 27(1), 125–160 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Nagata, K., Koashi, M., Imoto, N.: Configuration of separability and tests for multipartite entanglement in Bell-type experiments. Phys. Rev. Lett. 89(26), 260401 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Navascués, M., Pironio, S., Acín, A.: A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. New J. Phys. 10(7), 073013 (2008)

    Article  ADS  Google Scholar 

  46. Netzer, T., Thom, A.: Hyperbolic polynomials and generalized Clifford algebras. Discrete Comput. Geom. 51(4), 802–814 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pozsgay, V., Hirsch, F., Branciard, C., Brunner, N.: Covariance Bell inequalities. Phys. Rev. A 96(6), 062128 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  48. Pozas-Kerstjens, A., Rabelo, R., Rudnicki, Ł, Chaves, R., Cavalcanti, D., Navascués, M., Acín, A.: Bounding the sets of classical and quantum correlations in networks. Phys. Rev. Lett. 123(14), 140503 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  49. Pironio, S., Navascués, M., Acín, A.: Convergent relaxations of polynomial optimization problems with noncommuting variables. SIAM J. Optim. 20(5), 2157–2180 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Procesi, C.: The invariant theory of \(n\times n\) matrices. Adv. Math. 19(3), 306–381 (1976)

    Article  MATH  Google Scholar 

  51. Pólya, G., Szegő, G.: Problems and Theorems in Analysis. II. Classics in Mathematics. Springer-Verlag, Berlin, 1998. Theory of Functions, Zeros, Polynomials, Determinants, Number Theory, Geometry. Translated from the German by C. E. Billigheimer, Reprint of the 1976 English translation

  52. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42(3), 969–984 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  53. Pál, K.F., Vértesi, T.: Quantum bounds on Bell inequalities. Phys. Rev. A (3) 79(2), 022120 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  54. Riener, C., Theobald, T., Andrén, L.J., Lasserre, J.-B.: Exploiting symmetries in SDP-relaxations for polynomial optimization. Math. Oper. Res. 38(1), 122–141 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. Sutter, D., Berta, M., Tomamichel, M.: Multivariate trace inequalities. Commun. Math. Phys. 352(1), 37–58 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Schmüdgen, K.: The K-moment problem for compact semi-algebraic sets. Math. Ann. 289(2), 203–206 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  57. Skelton, R.E., Iwasaki, T., Grigoriadis, K.M.: A Unified Algebraic Approach to Linear Control Design. The Taylor& Francis Systems and Control Book Series, Taylor & Francis, Ltd., London (1998)

    Google Scholar 

  58. Stahl, H.R.: Proof of the BMV conjecture. Acta Math. 211(2), 255–290 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  59. Takesaki, M.: Theory of Operator Algebras. I, volume 124 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2002. Reprint of the first (1979) edition, Operator Algebras and Non-commutative Geometry, 5

  60. Uffink, J.: Quadratic Bell inequalities as tests for multipartite entanglement. Phys. Rev. Lett. 88(23), 230406 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  61. Vidav, I.: On some \(*\)-regular rings. Acad. Serbe Sci. Publ. Inst. Math. 13, 73–80 (1959)

    MathSciNet  MATH  Google Scholar 

  62. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    Article  ADS  MATH  Google Scholar 

  63. Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite Programming: Theory, Algorithms, and Applications, vol. 27. Springer, Berlin (2012)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank anonymous referees for their valuable comments and suggestions, which greatly improved presentation of the paper and demonstration of the main results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Klep.

Additional information

Communicated by Matthias Christandl.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

IK was supported by the Slovenian Research Agency grants J1-2453, J1-8132 and P1-0222. VM was supported by the FMJH Program PGMO (EPICS project) and EDF, Thales, Orange et Criteo, as well as from the Tremplin ERC Stg Grant ANR-18-ERC2-0004-01 (T-COPS project). JV was supported by the NSF grant DMS-1954709.

Alternative Proof of Theorem 4.4

Alternative Proof of Theorem 4.4

Proof of (i)\(\Rightarrow \)(iii). Assume \(a+\varepsilon \notin {{\mathcal {M}}^{\mathrm{cyc}}}\) for some \(\varepsilon >0\). Let \(U=\{p\in {{\,\mathrm{Sym}\,}}{\mathbb {T}}\mid {{\,\mathrm{tr}\,}}(p)=0 \}\). Then \({{\mathcal {M}}^{\mathrm{cyc}}}+U\) is a convex cone in \({{\,\mathrm{Sym}\,}}{\mathbb {T}}\). Since a is a pure trace polynomial, we have \(a+\varepsilon \notin {{\mathcal {M}}^{\mathrm{cyc}}}+U\). Since \({{\mathcal {M}}^{\mathrm{cyc}}}\) is archimedean, for every \(p\in {{\,\mathrm{Sym}\,}}{\mathbb {T}}\) there exists \(\delta >0\) such that \(1\pm \delta p\in {{\mathcal {M}}^{\mathrm{cyc}}}\), which in terms of [3, Definition III.1.6] means that 1 is an algebraic interior point of the cone \({{\mathcal {M}}^{\mathrm{cyc}}}+U\) in \({{\,\mathrm{Sym}\,}}{\mathbb {T}}\). By the Eidelheit–Kakutani separation theorem [3, Corollary III.1.7] there is a nonzero \({\mathbb {R}}\)-linear functional \(L_0:{{\,\mathrm{Sym}\,}}{\mathbb {T}}\rightarrow {\mathbb {R}}\) satisfying \(L_0({{\mathcal {M}}^{\mathrm{cyc}}}+U)\subseteq {\mathbb {R}}_{\ge 0}\) and \(L_0(a+\varepsilon )\le 0\). In particular, \(L_0(U)=\{0\}\). Moreover, \(L_0(1)>0\) because \({{\mathcal {M}}^{\mathrm{cyc}}}\) is archimedean, so after rescaling we can assume \(L_0(1)=1\). Let \(L:{\mathbb {T}}\rightarrow {\mathbb {R}}\) be the symmetric extension of \(L_0\), i.e., \(L(p)=\frac{1}{2} L_0(p+p^\star )\) for \(p\in {\mathbb {T}}\). Note that

$$\begin{aligned} L(p)=L({{\,\mathrm{tr}\,}}(p)) \end{aligned}$$
(A.1)

for all \(p\in {\mathbb {T}}\), and in particular \(L(pq)=L(qp)\) for all \(p,q\in {\mathbb {T}}\).

Now consider the set \({\mathcal {C}}\) of all symmetric linear functionals \(L':{\mathbb {T}}\rightarrow {\mathbb {R}}\) satisfying \(L'({{\mathcal {M}}^{\mathrm{cyc}}}+U)\subseteq {\mathbb {R}}_{\ge 0}\) and \(L'(1)=1\). This set is nonempty because \(L\in {\mathcal {C}}\). Endow \({\mathbb {T}}\) with the norm

$$\begin{aligned} \Vert p\Vert =\max \left\{ \Vert p({\underline{X}})\Vert \mid n\in {\mathbb {N}}, {\underline{X}}\in {\mathbb {S}}_n^k, \Vert X_j\Vert \le 1\right\} . \end{aligned}$$

This is indeed a norm because no nonzero trace polynomial vanishes on matrices of all finite sizes. By the Banach–Alaoglu theorem [3, Theorem III.2.9], the convex set \({\mathcal {C}}\) is weak*-compact. Thus by the Krein–Milman theorem [3, Theorem III.4.1] we may assume that our separating functional L is an extreme point of \({\mathcal {C}}\).

On \({\mathbb {T}}\) we define a semi-scalar product \(\langle p, q\rangle =L(pq^\star )\). By the Cauchy–Schwarz inequality for semi-scalar products,

$$\begin{aligned} {\mathcal {N}}=\left\{ q \in {\mathbb {T}}\mid L(qq^\star )=0\right\} \end{aligned}$$

is a linear subspace of \({\mathbb {T}}\). Let \(p,q\in {\mathbb {T}}\). Since \({{\mathcal {M}}^{\mathrm{cyc}}}\) is archimedean, there exists \(\delta >0\) such that \(1-\delta p p^\star \in {{\mathcal {M}}^{\mathrm{cyc}}}\) and therefore

$$\begin{aligned} 0\le L(q(1-\delta p p^\star )q^\star )=L(q q^\star )-\delta L(qpp^\star q^\star )\le L(q q^\star ). \end{aligned}$$
(A.2)

In particular, \(q\in {\mathcal {N}}\) implies \(qp\in {\mathcal {N}}\), so \({\mathcal {N}}\) is a left ideal. Furthermore, \(L({\mathcal {N}})=\{0\}\): if \(L(qq^\star )=0\), then for every \(\delta >0\),

$$\begin{aligned} 0\le L((\delta \pm q)(\delta \pm q)^\star )=\delta (\delta \pm 2 L(q)) \end{aligned}$$

and hence \(L(q)=0\). Let \({{\overline{p}}}=p+{\mathcal {N}}\) denote the residue class of \(p\in {\mathbb {T}}\) in \({\mathbb {T}}/{\mathcal {N}}\). Because \({\mathcal {N}}\) is a left ideal, we can define linear maps

$$\begin{aligned} \chi _p :{\mathbb {T}}/{\mathcal {N}}\rightarrow {\mathbb {T}}/{\mathcal {N}},\qquad {{\overline{q}}}\mapsto {\overline{pq}} \end{aligned}$$

for \(p\in {\mathbb {T}}\), which are bounded by (A.2).

Now

$$\begin{aligned} \langle {{\overline{p}}},{{\overline{q}}}\rangle =L(pq^\star ) \end{aligned}$$
(A.3)

is a scalar product on \({\mathbb {T}}/{\mathcal {N}}\), and we let H denote the completion of \({\mathbb {T}}/{\mathcal {N}}\) with respect to this scalar product. Each \(\chi _p\) extends to a bounded operator \({{\hat{\chi }}}_p\) on H, and the map

$$\begin{aligned} \pi : {\mathbb {T}}\rightarrow {\mathcal {B}}(H), \qquad p\mapsto {{\hat{\chi }}}_p \end{aligned}$$
(A.4)

is clearly a \(\star \)-representation with \(\ker \pi ={\mathcal {N}}\). Let \({\mathcal {F}}\) be the closure of \(\pi ({\mathbb {T}})\) in \({\mathcal {B}}(H)\) with respect to the weak operator topology. The map

$$\begin{aligned} \tau :\pi ({\mathbb {T}})\rightarrow {\mathbb {R}},\qquad {{\hat{\chi }}}_p\mapsto L(p) \end{aligned}$$

is a faithful tracial state on \(\pi ({\mathbb {T}})\) by \(L({\mathcal {N}})=\{0\}\) and (A.1). Since

$$\begin{aligned} \tau ({{\hat{\chi }}}_p)=\langle {{\overline{p}}},{\overline{1}}\rangle , \end{aligned}$$

\(\tau \) extends uniquely to a faithful normal tracial state on \({\mathcal {F}}\).

Next we claim that \(\pi (\text{ T})={\mathbb {R}}\). Observe that \({\overline{1}}\in H\) is a cyclic vector for \(\pi \) by construction and \(L(p)=\langle \pi (p){\overline{1}},{\overline{1}}\rangle \). Suppose \(\pi (\text{ T})\ne {\mathbb {R}}\). If \({\mathcal {E}}\) denotes the weak closure of \(\pi (\text{ T})\) in \({\mathcal {F}}\), then \({\mathcal {E}}\) is a central von Neumann subalgebra of \({\mathcal {F}}\); since \({\mathcal {E}}\ne {\mathbb {R}}\) and all the elements of \({\mathcal {E}}\) are self-adjoint, there is a nontrivial projection \(P\in {\mathcal {E}}\). Since \({\overline{1}}\) is cyclic for \(\pi \), we have \(P{\overline{1}}\ne 0\) and \((1-P){\overline{1}}\ne 0\). Hence we can define linear functionals \(L_i\) on \({\mathbb {T}}\) by

$$\begin{aligned} L_1(p)=\frac{\langle \pi (p)P{\overline{1}},P{\overline{1}}\rangle }{\Vert P{\overline{1}}\Vert ^2} \qquad \text {and}\qquad L_2(p)=\frac{\langle \pi (p)(1-P){\overline{1}},(1-P){\overline{1}}\rangle }{\Vert (1-P){\overline{1}}\Vert ^2} \end{aligned}$$

for all \(p\in {\mathbb {T}}\). One easily checks that L is a convex combination of \(L_1\) and \(L_2\), \(L_i(1)=1\) and \(L_i({{\mathcal {M}}^{\mathrm{cyc}}})={\mathbb {R}}_{\ge 0}\). Furthermore, since P is a weak limit of \(\{\pi (s_n)\}_n\) for some \(s_n\in \text{ T }\) and

$$\begin{aligned} \langle \pi (p-{{\,\mathrm{tr}\,}}(p))\pi (s_n){\overline{1}},{\overline{1}}\rangle =L(s_n(p-{{\,\mathrm{tr}\,}}(p)))=L(s_np-{{\,\mathrm{tr}\,}}(s_np)))=0, \end{aligned}$$

we also have

$$\begin{aligned} \langle \pi (p-{{\,\mathrm{tr}\,}}(p))P{\overline{1}},P{\overline{1}}\rangle = \langle \pi (p-{{\,\mathrm{tr}\,}}(p))P{\overline{1}},{\overline{1}}\rangle =0 \end{aligned}$$

so \(L_i(U)=\{0\}\). Therefore \(L_i\in {\mathcal {C}}\), so \(L=L_1=L_2\) by the extreme property of L. Then for \(\lambda =\Vert P{\overline{1}}\Vert ^2\),

$$\begin{aligned} \langle \pi (p){\overline{1}},\lambda {\overline{1}}\rangle =\lambda \langle \pi (p){\overline{1}},{\overline{1}}\rangle =\langle \pi (p)P{\overline{1}},P{\overline{1}}\rangle =\langle P\pi (p){\overline{1}},P{\overline{1}}\rangle =\langle \pi (p){\overline{1}},P{\overline{1}}\rangle \end{aligned}$$

for all \(p\in {\mathbb {T}}\). Therefore \(P{\overline{1}}=\lambda {\overline{1}}\) since \({\overline{1}}\) is a cyclic vector for \(\pi \). So \(\lambda \in \{0,1\}\) since P is a projection, a contradiction.

Let \({\underline{X}}:=({{\hat{\chi }}}_{x_1},\dots ,{{\hat{\chi }}}_{x_n})\). This is a tuple of self-adjoint operators in \({\mathcal {F}}\), and \(\pi (\text{ T})={\mathbb {R}}\) implies \(p( {\underline{X}})={{\hat{\chi }}}_p\) for all \(p\in {\mathbb {T}}\). Therefore \({\underline{X}}\in {\mathcal {D}}_{{\mathcal {M}}^{\mathrm{cyc}}}^{{\mathcal {F}},\tau }\) by (A.3) and \(L({{\mathcal {M}}^{\mathrm{cyc}}}) \subseteq {\mathbb {R}}_{\ge 0}\). Finally \(a({\underline{X}})=\tau ({{\hat{\chi }}}_a)=L(a)<0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klep, I., Magron, V. & Volčič, J. Optimization Over Trace Polynomials. Ann. Henri Poincaré 23, 67–100 (2022). https://doi.org/10.1007/s00023-021-01095-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-021-01095-4

Keywords

Mathematics Subject Classification

Navigation